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Preface

These are notes (in progress) for a 2 hour per week course in algebraic K-
theory taught at the Freie Universität Berlin in Winter 2020/21. They will
continue to be updated regularly. Please feel free to email me at gak@math.fu-
berlin.de if you notice any typos or errors. These notes are hosted on my
personal website.

These notes draw from the tome of Charles Weibel, known as the K-book
[25], Algebraic K-theory and its applications by Jonathon Rosenberg [16], Al-
gebraic K-theory by Srinivas [19], as well as the original papers in the subject
by Quillen [14, 15], Segal [17], and Waldhausen [22, 23]. In other words, I do
not claim originality of any results or proofs. The goal is to give a brief survey
of constructions of algebraic K-theory, fundamental theorems in algebraic K-
theory, and applications to geometric topology, algebraic geometry, and num-
ber theory. The notes focus on the case of algebraic K-theory of rings, which
are the common thread in the applications to each of these three subjects.

These notes briefly survey the field of algebraic K-theory from the time
period 1950-1985. The advantage of focusing on this time period is that no
previous knowledge of ( 8, 1)-categories is required and for those interested
in modern constructions of algebraic K-theory, many of the essential ideas
already existed in the work of Quillen, Segal, and Waldhausen.

It is assumed that students in this course have a firm background in the
basics of algebra, linear algebra, category theory, and topology. Additional
knowledge of geometry topology, algebraic geometry, and number theory is
useful for understanding certain examples, but certainly not required for the
bulk of the material. Previous knowledge of the theory of simplicial sets will
certainly be helpful, but a short section on such material is included as an
appendix for those unfamiliar.
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Conventions

Throughout, by a ring we will mean an associative ring with unit. We will
always specify that a ring is non-unital when we want to consider it without
unit.

Let ModR be the category of left modules over a ring R. When R = Z,
we simply write Ab for this category and refer to it as the category of abelian
groups and when R is a field k, we write Veck for this category and refer to it
as the category of vector spaces over a field k. We let M(R) denote the skeleton
of the category of finitely generated left R modules and we let P(R) denote
the skeleton of the category of finitely generated projective left modules over
a ring R. When k is a commutative ring, let Repk(G) be the skeleton of the
category of finitely generated left k[G]-modules. Usually, we we only consider
this in the case k is a field.

Throughout, by a space we mean a compactly generated weak Hausdorff
space and we write Top for the category of compactly generated weak Haus-
dorff spaces. Write CW for the category of CW complexes and CW f for the
category of finite CW complexes. When X is a space, let VBR(X) denote the
skeleton of the category of real vector bundles over X and let VBC(X) denote
the skeleton of the category of complex vector bundles over X.

Let Set be the category of sets and let Fin be the skeleton of the category
of finite sets. Let G be a finite group and let FinG the skeleton of the category
of finite G-sets. When R is a ring, let RepR(G) be the skeleton of the category
of finite dimensional k[G]-modules.
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Chapter 1

Introduction

The 0-th algebraic K-theory group K0 was first defined by Grothendieck in the
late 1950’s in order to generalize the Riemann-Roch Theorem to varieties [4].
The name K-theory comes from German word Klassen meaning classes and the
reason for this name will be more clear after reading Section 2.1. Even earlier,
in the early 1950’s, Whitehead studied the simply homotopy type of a finite
CW complex and constructed an obstruction that encodes whether two spaces
that are homotopy equivalent are in fact simple homotopy equivalent. It was
later understood that this class lived in the first algebraic K-theory group K1
of an integral group ring. It was then shown that these two algebraic K-theory
groups could be related by a localization sequence and that there should in
fact be a related group Ki for all integers i extending this localization sequence
to the left and right.

Milnor constructed the group K2 of a ring as the center of the Steinberg
group of a ring, inspired in part by a theorem of Matsumoto [10], and used
this to motivate his definition of the higher algebraic K-theory groups, now
known as Milnor K-theory, in 1970 [12]. However, as we will see, this theory
is a not as rich invariant in the sense that for finite fields the Milnor K-theory
groups KM

n vanish for n ≥ 2.
In 1972, Quillen defined higher algebraic K-theory groups using the +-

construction [14]. One of his key insights was that the algebraic K-theory
groups should be defined as the the homotopy groups of a space. In the
same year [15], Quillen defined higher algebraic K-theory groups for a cate-
gory equipped with notion of exact sequences called an exact category. This
allowed for much broader input, in particular recovering examples of interest
in algebraic geometry.

In 1974 [17], Segal defined the algebraic K-theory of a symmetric monoidal
category. This notion is sensitive to the symmetric monoidal structure, so it
not a special case of Quillen’s Q-construction unless the symmetric monoidal
structure is the direct sum in an additive category. Quilen’s Q-construction
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4 CHAPTER 1. INTRODUCTION

is also not a special case of Segal’s construction. One of Segal’s motivations
was to give new constructions of infinite loop spaces, which were known to
represent cohomology theories by Brown representability [5].

In 1978, Waldhausen extended Quillen’s Q-construction further so that the
input could be a category with cofibrations and weak equivalences [22]. This
allowed one to define the algebraic K-theory of spaces. This new definition
extended the applications of algebraic K-theory to manifold theory [24].

Since 1985, there have been several new constructions of algebraic K-theory
using the theory of ( 8, 1)-categories. These constructions have proven quite
useful for demonstrating universal properties of algebraic K-theory. For ex-
ample, in 2016, Barwick defined a version of Waldhausen’s algebriac K-theory
construction for small Waldhausen quasi-categories in [1] and proved that
algebraic K-theory may be considered as a homology theory, in an abstract
sense, on the quasi-category of small Waldhausen quasi-categories. Blumberg–
Gepner–Tabuada [3] prove that the connective algebraic K-theory of a small
stable quasi-category is the universal additive invariant and non-connective
algebraic K-theory of a small stable quasi-category is the universal localizing
invariant. Additionally, Gepner-Groth-Nikolaus [7] prove universal properties
of the algebraic K-theory of symmetric monoidal quasi-categories. However,
will not discuss these more constructions further in the present notes and
therefore these are all contained in the long list of sins of omision in these
notes.



Chapter 2

Classical Algebraic K-theory

We begin by studying the groups K0 and K1. These two groups arose inde-
pendently in the 1950’s from entirely different contexts. Later, it was proven
they are related by a localization sequence.

The group K2 of a ring was then defined by Milnor, inspired by work of
Matsumoto [10], and Milnor used this to motivate his definition of higher
algebraic K-theory groups KM

∗ now know as Milnor K-theory. However, these
groups are not as rich an invariant as the higher algebraic K-theory groups
that we will discuss in the next chapters, due to Quillen [14, 15]. We will
explicitly prove this in the case of finite fields.

At the start, I want to emphasize that there are really two flavors of al-
gebraic K-theory: algebraic K-theory of symmetric monoidal categories and
algebraic K-theory categories with a notion of exact sequences, such as ex-
act categories. The two flavors of algebraic K-theory agree when we consider
symmetric monoidal categories with respect to the coproduct and algebraic K-
theory of categories with exact sequences in which these exact sequences split.
For example, this is the case for the category of finitely generated projective R
modules. Since the category of finitely generated projective R modules will be
our central example throughout and the distinction may not always be clear.

I also want to emphasize that non of the results in this chapter are new
and our treatment in this chapter is almost entirely contained in chapters I-III
of Weibel’s K-book [25]. In [25], Weibel goes into significantly more depth
on this subject than we attempt to do here. We also point the reader towards
books of Bass [2] and Milnor [13] from the time period before 1972, which
give an even more thorough treatment of what was known at the time about
algebraic K-theory groups. The first four chapters of Rosenberg’s [16] are also
an great reference for this material and he much more depth then I do in this
first chapter.
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6 CHAPTER 2. CLASSICAL ALGEBRAIC K-THEORY

2.1 The Grothendieck group

In order to give a very general definition of K0, we will first briefly set up the
the theory of monoidal categories and monoids in a monoidal category.

Monoidal categories are an abstraction of the properties enjoyed by the
category of abelian groups Ab with respect to the tensor product ⊗Z and the
integers Z. In particular, the category Ab is equipped with a functor

⊗Z : Ab× Ab → Ab

and a unit Z object in the sense that there are isomorphisms

M ⊗Z Z ∼= M ∼= Z ⊗Z M

for any abelian group M, which are natural in M. The tensor product is also
associative

(M ⊗ N)⊗ L ∼= M ⊗ (N ⊗ L),

where this associativity is natural in M, N and L. There is also a factor swap
map

BM,N : M ⊗ N → N ⊗ M

which is also natural in M and N. In addition, each of these pieces of data
satisfy certain commutative diagrams. This data is abstracted to the definition
of a symmetric monoidal category, which also applies in many other contexts.

Definition 2.1.1. A symmetric monoidal category C consists of a category C a
functor

⊗ : C × C → C

and a unit 1C together with four natural isomorphisms:

1. an associator

a−,=,≡ : (−⊗ =)⊗ ≡
∼= !! −⊗ (= ⊗ ≡)

2. a left unitor

λ− : 1 ⊗ (−)
∼= !! (−),

3. a right unitor

ρ− : (−)⊗ 1
∼= !! (−),

and

4. a braiding

B−,= : (−)⊗ (=)
∼= !! (=)⊗ (−).
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These natural transformations must satisfy the triangle identity

idx ⊗λy ◦ ax,1C ,y = ρx ⊗ idy (2.1.2)

and pentagon identity

aw,x,y⊗z ◦ aw⊗x,y,z = idw ⊗ax,y,z ◦ aw,x⊗y,z ◦ aw,x,y ⊗ idz (2.1.3)

the hexagon identities

ay,z,x ◦ Bx,y⊗z ◦ ax,y,z = idy ⊗Bx,z ◦ ay,x,z ◦ Bx,y ⊗ idz (2.1.4)

a−1
y,z,x ◦ Bx,y⊗z ◦ ax,y,z = idy ⊗Bx,z ◦ ay,x,z ◦ Bx,y ⊗ idz (2.1.5)

and the “squaring to identity” axiom

By,x ◦ Bx,y = idx⊗y . (2.1.6)

We succinctly write (C,⊗, 1C) for all of this data.
If C has all of the other structure except that it is not equipped with a

braiding natural transformation B−,= satisfying (2.1.4), (2.1.5), and (2.1.6), then
we say C is a monoidal category.

Examples 2.1.7. The category P(R) is a symmetric monoidal category with
respect to ⊕ denoted (P(R),⊕, 0) and it is a monoidal category with respect
to ⊗R, denoted (P(R),⊗R, R). Moreover, when R is a commutative ring then
the monoidal category (P(R),⊗R, R) is in fact a symmetric monoidal category.

The category VBk(X) for k = R or k = C is a symmetric monoidal category
with Whitney sum ⊕ and it is a monoidal category with tensor product ⊗
denoted (VBk(X),⊕, 0) and (VBk(X),⊗, k) where k here denotes the trivial
one dimensional k vector bundle.

The categories Set (respectively Fin) are symmetric monoidal categories
with respect to the coproduct (Set,∐, ∅) (respectively (Fin,∐, ∅), and with
respect to the product (Set,×, ∗) (respectively (Fin,×, ∗)). Similarly, FinG is a
symmetric monoidal category with respect to the coproduct (FinG,∐, ∅) and
the product (FinG,×, ∗). Let k be a general field. The category Repk(G) is a
symmetric monoidal category with respect to the direct sum (Repk(G),⊕, 0)
and it is a monoidal category with respect to tensor product (Repk(G),⊗k, k).

We now discuss monoids in a general symmetric monoidal category.

Definition 2.1.8. A (unital) monoid M in a symmetric monoidal category C is
an object M in C equipped with an operation

µ : M ⊗ M → M

and a unit map
η : 1C → M

from the unit object 1C in C to M satisfying:
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1. the associativity axiom

M ⊗ M ⊗ M
µ×1
!!

1×µ

""

M ⊗ M

µ

""
M ⊗ M

µ
!! M

(2.1.9)

and

2. the unitality axiom

M

❍❍
❍❍

❍❍
❍❍

❍

❍❍
❍❍

❍❍
❍❍

❍

η×M
!! M ⊗ M

µ

""

M
1×η
##

✈✈
✈✈
✈✈
✈✈
✈

✈✈
✈✈
✈✈
✈✈
✈

M.

(2.1.10)

If in addition, the commutativity axiom

M ⊗ M

µ
$$❍

❍❍
❍❍

❍❍
❍❍

τ !! M ⊗ M
µ

%%✈✈
✈✈
✈✈
✈✈
✈

M

(2.1.11)

is satisfied, we say that M is a commutative monoid in C.
When (C,⊗C , 1C) = (Set,×, ∗) we will simply refer to (unital) monoids

and commutative monoids in Set as monoids and commutative monoids.

Each of the examples (P(R),⊕, 0), (M(R),⊕, 0), VBk(X), (Fin,∐, ∅), (Fin,×, ∗),
(FinG,∐, ∅), (FinG,×, ∗), (Repk(G),⊕, 0), and (Repk(G),⊗k, k) may actually
be regarded as commutative monoids by applying the forgetful functor from
small categories to sets.

If (M,+, 0) is a commutative monoid with operation + and (M,×, 1) is a
monoid with respect to a second operation × such that (M,+,×, 0, 1) forms
a ring without additive inverses, then we say that M is a semi-ring. In fact,
(P(R),⊕,⊗R, 0, R), (VBk(X),⊕,⊗, 0, k), (Fin,∐,×, ∅, ∗), (FinG,∐,×, ∅, ∗), and
(RepC(G),⊕,⊗C[G], 0, C[G]) are all examples of semi-rings.

We are now prepared to discuss our definition algebraic K-theory K0.

Construction 2.1.12. Given a commutative monoid M we form the Grothendieck
group completion of M, denoted Mgp as follows. We define an equivalence
relation on elements (m, n) ∈ M × M. We define an equivalence relation

(m, n) ∼ (m + p, n′ + p)

for any p ∈ M. We then define Mgp := M × M/ ∼.
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Exercise 2.1.13. Check that (m, n) ∼ (m + p, n′ + p) is an equivalence relation.

Note that, by construction the abelian group Mgp has the universal prop-
erty that given a map of commutative monoids M → A, where A is an abelian
group, then the map M → A factors as

M !!

&&❉
❉❉

❉❉
❉❉

❉ Mgp

""
✤
✤
✤

A.

(2.1.14)

In other words, there is an adjunction given by the isomorphism

HomCMon(M, A) ∼= HomAb(Mgp, A)

natural in M and A. In particular, the construction Mgp is functorial in M.
Alternatively, we could let F(M) be the free abelian group on symbols

[m] where m ∈ M. We can then quotient by the subgroup R(M) of F(M)
generated by the relations [m + n]− [m]− [n]. This construction also clearly
satisfies the universal property 2.1.14. Consequently, we may give a different
definition of Mgp that agrees with the previous construction up to natural
isomorphism

Definition 2.1.15. Given a commutative monoid M, define

Mgp := F(M)/R(M)

where F(M) and R(M) are as defined above.

For m ∈ M we will write [m] for a general element in Mgp.

Definition 2.1.16. Let R be a ring. Then we define the 0-th algebraic K-theory
group of R

K⊕
0 (R) := (P(R),⊕, 0)+

where we regard the set of isomorphism classes of subgroups of P(R) as
commutative monoid via ⊕ and 0. In fact, since

(P(R),⊕,⊗R, 0, R)

is a semi-ring, then K0(R) is a ring. When R is a commutative ring then K0(R)
is also a commutative ring.

In fact, this is a special case of a more general construction.

Definition 2.1.17. Let (C,⊗, 1) be a skeletally small symmetric monoidal con-
crete category with symmetric monoidal skeleton sk C. Then we may regard
skC as a commutative monoid in Set with respect to ⊗ and 1 and define

K⊗
0 (C) := (sk(C),⊗1)+.
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Moreover, if
(skC,⊕,⊗C , 0C , 1C)

is a semi-ring. Then K⊕
0 (C) is a ring.

This general construction allows us to recover many examples of interest.

Examples 2.1.18. The 0-th complex topological K-theory of X is

KU0(X) ∼= K⊕
0 (VBC(X))

and the 0-th real topological K-theory of X is

KO0(X) ∼= K⊕
0 (VBR(X)).

In fact these are both rings because (VBk(X),⊕,⊗, 0, k) is a semi-ring when
k = C or k = R.

The Burnside ring of a finite group G is

A(G) = K∐
0 (FinG)

where the ring structure comes from the fact that (FinG,∐,×, ∅, ∗) is a semi-
ring.

Let k be a field. The representation ring of G is

Rk(G) = K⊕
0 (Repk(G))

where the ring structure comes from the fact that (Repk(G),⊕,⊗k, 0, C) is a
semi-ring.

We finish with some basic computations. First, note that (N,+, 0) is a
commutative monoid and its Grothendieck group completion is clearly

N+ = Z.

Notice that there is always map of commutative monoids

N →P(R).

n -→Rn

and by functoriality of the Grothendieck construction, a group homomor-
phism

Z → K0(R). (2.1.19)

We say that R satisfies the left invariant basis property, denoted IBP, if Rn

and Rm are not isomorphic whenever n ∕= m. In this case, the rank of a free
left R module does not depend on a choice of basis. All commutative rings
satisfy this property and integral group rings Z[G] all satisfy the invariant
basis property.
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Example 2.1.20. The ring of k-linear endomorphisms Endk(k) does not satisfy
the IBP property.

Exercise 2.1.21. Prove that there is an isomorphism of Endk(k) modules

Endk(k) ∼= Endk(k)⊕ Endk(k),

verifying the claim in Example 2.1.20.

Lemma 2.1.22. When R satisfies the IBP, then the map

Z → K0(R)

induced by the map n -→ Rn is injective.

Definition 2.1.23. We define the reduced K0 group to be the cokernel of the
map Z → K0(R) and denote it K̃0(R).

Proposition 2.1.24. When k is a field, then

K̃0(k) = 0.

Proof. The rank of a vector space gives a map of commutative monoids

P(k) → N

sending [kn] to n, which is an isomorphism of commutative monoids.

Exercise 2.1.25. Prove that when R is a principle ideal domain, then

K̃0(R) = 0.

Exercise 2.1.26. Prove that when R is a local ring, then

K̃0(R) = 0.

The invariant K̃0(R) has interesting applations to geometry and number
theory. For example, when G is a group and R = Z[G] is the associated
integral group ring, then we define the 0-th Whitehead group

Wh0(G) := !K0(Z[G]).

We will simply state a result of Wall’s that shows that the 0-th Whitehead
group is an interesting invariant in topology. We say that a topological space
X is dominated by a CW complex K if it there is a map K → X with right
homotopy inverse.

Theorem 2.1.27 (Wall’s finiteness obstruction). Suppose that X is dominated by a
finite CW complex K and let G = π1X. Then there is an associated obstruction class
w(X) ∈ Wh0(G) such that w(X) = 0 if and only if X is homotopy equivalent to a
finite CW complex.
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Remark 2.1.28. Note that we know by CW approximation that X is homotopy
equivalent to a CW complex, so it suffices to consider the case when X is also
a CW complex, however it is not at all clear that a homotopy retract of a finite
CW complex is again finite CW complex.

Reduced K0 also has applications to number theory. First, we recall a
definition from commutative algebra.

Definition 2.1.29. A Dedekind domain R is an integral domain such that for
all nontrivial ideals J ⊂ I ⊂ R, there exists an ideal K such that IK = J.

Remark 2.1.30. In a Dedekind domain R every ideal can be written as a prod-
uct of prime ideals. However, it may not be able to be written as a product
of prime ideals in a unique way. If every ideal can be written as a product of
prime ideals in a unique way, then R is a PID. Every PID is also clearly a PID.

Definition 2.1.31. The ideal class group of a Dedekind domain R it the quotient

Cl(R) = {I : I ⊂ R}/ ∼
where I ranges over all ideals in R and the equivalence relation states that
I ∼ J if there exist x, y ∈ R such that xI = yJ as subsets of R. The group
structure is given by the product of ideals.

Exercise 2.1.32. Check that this is in fact an equivalence relation and that
Cl(R) is an abelian group.

The ideal class group measures the failure of a Dedekind domain to be a
UFD, or in other words, the failure of a Dedekind domain to be a PID.

Again, we will not prove the following result, but we record it as another
important application of K0.

Theorem 2.1.33. When R is a Dedekind domain, then there is an isomorphism

K̃0(R) ∼= Cl(R).

The class group measures the failure of unique prime factorization. In
other words, when R is also a UFD then K̃0(R) = 0. To see that unique prime
factorization can fail, simply consider the ring Z[

√
−5]. In this ring,

(1 −
√
−5)(1 +

√
−5) = 6 = 2 · 3.

Since Z[
√
−5] is a Dedekind domain, we observe the following.

Lemma 2.1.34. There is an isomorphism

K0(Z[
√
−5]) = Z ⊕ Z/2.

The result Theorem 2.1.33 is a special case of a more general result, which
we again state without proof.

Theorem 2.1.35. Let R be a commutative ring of Krull dimension ≤ 1, then there is
an isomorphism

rank ⊕ det : K0(R) ∼= [Spec(R), Z]⊕ Pic(R).
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2.2 The Whitehead group Wh1(G)

In the 1940’s and 1950’s, Whitehead developed the theory of simple homotopy
types. We say that a finite CW complex Y has the same simple homotopy type
as a finite CW complex X if they are homotopy equivalent and each homotopy
can be described in terms of elementary expansions and collapses.

More precisely, let (K, L) be finite CW pair. Then we write K ↘e L and say
that K collapses to L via an elementary collapse if the following hold:

1. K is build from L by attaching two cells; i.e. K = L ∪ en−1 ∪ en where
e1, e2 ∕⊂ K.

2. there exists a pair (Dn, Dn−1) and a map

ψ : Dn → K

such that
Sn−1

""

!! L

""
Dn−1

ψ|Dn−1

!! L ∪ en−1

and
Sn

""

!! L

""
Dn−1

ψ
!! L ∪ en−1

such that the closure cl(δDn − Dn−1) ⊂ Ln−1, where Ln−1 is the n-
skeleton of L.

In this situation, we also write L ↗e K and say that L expands to K via an
elementary expansions.

Whitehead defined a group which encoded the obstruction to two homo-
topy equivalent finite CW complexes having the same simple homotopy type.
Suppose X and Y are CW complexes and there is a homotopy equivalence

X ≃→ Y.

Then clearly this homotopy equivalence induces an isomorphism π1X ∼= π1Y.
We would like to know whether X and Y are simple homotopy equivalent.
There is an obstruction to this, which lies in a group Wh(π1X), which is an
ablian group that depends only on the group π1X. It was later noted that this
group can be defined in terms of algebraic K-theory.
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Let R be an associative ring and let GLnR be the group of invertible n × n
matrices with coefficients in R. There is an inclusion

GLnR ⊂ GLn+1R

given by

A -→
"

A 0
0 1

#

We can then form the union (the colimit) to define

GL(R) =
!

n≥1

GLn(R).

In general, if we have a group G we can take the quotient by commutators to
define

Gab := G/[G, G].

In fact this is a left adjoint to the forgetful functor from abelian groups groups
so it satisfies a universal property, which is encoded in the natural isomor-
phism

HomAb(G
ab, A) ∼= HomGp(G, A).

Definition 2.2.1. Let R be a ring, then we define

K1(R) := GL(R)ab.

In fact, there is a nice description of the commutator [GL(R), GL(R)]. Let
En(R) be the subgroup of GLn(R) consisting of the n × n matrices, which are
transvections. A transvection is the sum of the identity matrix and a matrix
with only one nonzero entry, where that nonzero entry does not occur on the
diagonal. We write ei,j(r) for this matrix where r is the nonzero entry and it
occurs in the i, j-th position where i ∕= j. We may then define E(R) in the same
way that we defined GL(R) as the union

E(R) =
!

n≥1

En(R).

Definition 2.2.2. A group G is perfect if

G = [G, G].

Note that for a perfect group Gab = 0. Such groups are quite interesting
from the perspective of topology. For example, a path connected space such
that π1X is a nontrivial perfect group and πkX = 0 for all k > 0 has the
property that its homology is the same as the homology of a point and yet it
X is not contractible.

Lemma 2.2.3. When n ≥ 3, then En(R) is a perfect group.
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Proof. Whenever i, j, k are distinct, then

ei,j(r) = [ei,k(r), ek,i(1)].

Exercise 2.2.4. Give an example where E2(R) is not perfect.

Exercise 2.2.5. Verify that, if g ∈ GLn(R), the identity
"

g 0
0 g−1

#
=

"
1 g
0 1

#"
1 0

−g−1 1

#"
1 g
0 1

#"
0 −1
1 0

#

holds in GL2n(R).

The following example will be useful in the proof of Whitehead’s lemma.

Example 2.2.6. A signed permutation matrix is a matrix that permutes the
standard basis on Rn up to a sign. If we write {e1, . . . , en} for the standard
basis, then a signed permutation acts on the set {±e1, . . . ,±en} . We observe
that, for example, the signed permutation matrix

w1,2 :=
"

0 1
−1 0

#
= e1,2(1)e2,1(1)e1,2(1)

can be written as a product of transvections and therefore it is contained in
E2(R) for any ring R. More generally,

wi,j ∈ En(R)

for n ≥ i, j. We can then show that cyclic permutations of three basis elements
are also contained in En(R), since they can be written as wjkwi,j. Consequently,
every matrix corresponding to an even permutation of basis elements is an
element in En(R) for some n. Thus, by Exercise 2.2.5 we know that E2n(R)
contains the matrix "

g 0
0 g−1

#
.

The subgroup En(R) is not necessarily a normal subgroup in GLn(R). It
is often a normal subgroup in GLn(R) for sufficiently large n, but even this is
too much to ask for in general. When R is a commutative ring, the situation
is much easier and En(R) is normal in GLn(R) for n ≥ 3. Nevertheless, we
have the following lemma due to Whitehead which, in particular, implies that
E(R) is normal in GL(R).

Lemma 2.2.7 (Whitehead’s Lemma). There is an isomorphism

[GL(R), GL(R)] ∼= E(R)
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Proof. The fact that
E(R) ⊂ [GL(R), GL(R)]

follows from Lemma 2.2.3. Conversely, suppose [A, B] ∈ [GLn(R), GLn(R)].
Then we can write [A, B] as the product

[A, B] =
"

A 0
0 A−1

#"
B 0
0 B−1

#"
(AB)−1 0

0 AB

#

By Example 2.2.6, we therefore know that [A, B] ∈ E(R).

This gives a new definition of K1(R).

Definition 2.2.8. Let R be a ring, then we define

K1(R) := GL(R)/E(R).

In particular, K1(R) is a quotient of GL(R) by a perfect normal subgroup.
The definition as a quotient by a perfect normal subgroup will be important
for the next chapter.

Definition 2.2.9. We define the Whitehead group of a group G as

Wh1(G) := K1(Z[G])/ < ±g : g ∈ G > .

where g ∈ G is regarded as an element in GL1(Z[G]) ⊂ GL(Z[G]) and

< ±g : g ∈ G >

denotes the subgroup of K1(Z[G]) generated by the elements ±g ∈ K1(Z[G]).

Again, we will simply cite a deep result that demonstrates that this group
is useful for studying problems in topology.

Theorem 2.2.10 (Whitehead). Suppose K and L are finite CW complexes and there
is a homotopy equivalence f : K → L inducing an isomorphism π1K ∼= π1L. Let
G = π1K. Then there is an associated class

τ( f ) ∈ Wh1(G),

called the Whitehead torsion of f , such that τ( f ) = 0 if and only if f is a simple
homotopy equivalence.

It happens quite often that a homotopy equivalence between finite CW
complexes is in fact a simple homotopy equivalence. For an example of non-
vanishing Whitehead torsion, consider the Lens spaces

L(p, q) = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}/(z1, z2) ≃ (ζz1, ζqz2)
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where p, q ≥ 1 are integers and ζ is a primitive p-th root of unity. Then there
exists a homotopy equivalence

f : L(7, 1) ≃→ L(7, 2)

and one can prove that any such homotopy equivalence cannot be a simple
homotopy equivalence [3, p.98], giving an example when

τ( f ) ∕= 0 ∈ Wh1(π1(L(7, 1)) = Wh1(Z/7).

In fact, there are other applications of Whitehead torsion to manifold the-
ory. For those unfamiliar with these constructions in manifold theory, we do
not plan to give full definitions as that would be too much of a diversion and
these constructions will not be used later. We therefore just provide enough
information to state the main results in order to indicate the depth of the
subject of algebraic K-theory.

Let (W, M, M′) be a triple of compact piecewise linear (PL) manifolds. We
say this triple is an h-cobordism if W has boundary M ∐ M′ and both inclu-
sions M ⊂ W and M′ ⊂ W are homotopy equivalences. There is therefore a
Whitehead torsion class τ ∈ Wh1(π1M) associated to the inclusion M ⊂ W.
We record the following deep result, proven by Mazur [11], without proof.

Theorem 2.2.11 (The s-cobordism theorem). Given an h-cobordism (W, M, M′)
of PL-manifolds, with M fixed and dim(M) ≥ 5. Then there is a PL homeomorphism
of triples

(W, M, M′) ∼= (M × [0, 1], M × {0}, M × {1})
if and only if τ = 0. Moreover, every element τ ∈ Wh1(π1M) arises as the White-
head torsion of some h-cobordism (W, M, M′).

This result can be used to prove a version of the generalized Poincare
conjecture, which had originally proven by Smale [18] before the s-cobordism
theorem was known..

Corollary 2.2.12. Suppose N is a PL manifold with the same homotopy type as a
sphere Sn and n ≥ 5. Then N is PL-homeomorphic to a Sn.

Proof. Form a PL manifold W by removing two disjoint n-discs D1 and D2
from N. Then we produce a PL cobordism (W, Sn−1

1 , Sn−1
2 ) where Sn−1

i is
the boundary of Di in N. Since π1Sn−1 = 0 when n ≥ 5, we know that the
Whitehead torsion τ ∈ Wh1(0) vanishes. Thus, there is a PL homeomorphism
W ∼= Sn−1 × [0, 1] by Theorem 2.2.11 and N = W ∪ D1 ∪ D2 is therefore PL
homeomorphic to Sn.

2.3 Relating K0 and K1

Finally, we prove that there is a localization sequence relating K1 and K0 in
certain cases. Let I be an ideal in R and let GL(I) be the kernel of the map
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GL(R) → GL(R/I). Let En(R, I) be the normal subgroup of En(R) generated
by matrices ei,j(r) such that r ∈ I and 1 ≤ i ∕= j ≤ n and define E(R, I) as the
union

E(R, I) =
!

n≥1

En(R, I).

Lemma 2.3.1 (Relative Whitehead Lemma). The group E(R, I) is normal in
GL(I) and

[GL(I), GL(I)] ⊂ E(R, I).

Exercise 2.3.2. Prove Lemma 2.3.1.

Definition 2.3.3. Define the relative K1 group as

K1(R, I) := GL(I)/E(R, I).

We can also define a relative algebraic K-theory group K0. Given a ring
R and an ideal I ∈ R, we can for the trivial square-zero extension of R by I,
denoted R ⊕ I. We will use an explicit model for this square zero extension as
the pullback

R ×R/I R !!

""

R

""
R !! R/I

where the pullback is

R ×R/I R = {(r1, r2) : r1 − r2 ∈ I}.

This pullback has a splitting R → R ×R/I R given by sending r to (r, r) and
the kernel is I so we see that it is abstractly isomorphic to R ⊕ I, but the
description in terms of the pullback can be useful for relating the quotient
R ⊕ I → R to the quotient R → R/I.

Definition 2.3.4. We define the relative K0 group as

K0(R, I) := ker(K0(R ⊕ I) → K0(R)).

The definitions of relative K1 and relative K0 are a bit different. This is
because K0(R, I) in fact does not depend on R. If R → S is a map of rings
and I is mapped isomorphically onto an ideal of S, which we also call I, then
K0(R, I) ∼= K0(S, I). We therefore sometimes simply write

K0(I) := K0(R, I).

The same is not true for K1(R, I) and in fact there are maps of rings R → S
where I maps isomorphically onto an ideal of S, also denoted I, and yet

K1(R, I) ∕∼= K1(S, I).
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It is known that K1(R, I) is independent of R if and only if I2 = I, or in other
words I is idempotent by [21, 14.2].

Given a map of commutative rings R → S such that and ideal I in R maps
isomorphically onto an ideal of S, the the square

R !!

""

S

""
R/I !! S/I

(2.3.5)

is a pullback of associative rings. We say that the square above is a Milnor
square.

Construction 2.3.6. Given a Milnor square, we can construct an R-module
M = (M1, g, M2) from the data of an S-module M1 and R/I-module M2 and
an isomorphism

g : M2 ⊗R/I S/I ∼= S/I ⊗S M1

of S/I-modules by defining M to be the pullback

M !!

""

M1

""
M2 !! M1/IM1

in the category of R-modules.

Lemma 2.3.7. Every finitely generated projective R-module P can be written as

P = (P1, P2, g)

for some P1 ∈ P(S), P2,∈ P(R/I) and

g : P2 ⊗R/I S/I ∼= S/I ⊗S P1

in P(S/I).

In particular, given a matrix A ∈ GLn(S/I) ⊂ GLn(S/I), we can define a
finitely generated projective R-module

P = (P1, P2, A)

where
A : P2 ⊗R/I S/I ∼= S/I ⊗S P1

is our isomorphism and so P2 is a free R/I-module and P1 is a free S-module.
This defines a map

δ : GL(S/I) → K0(R).

Moreover, given a Milnor square this map fits into the following Mayer-
Vietoris sequence.
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Theorem 2.3.8 (Mayer-Vietoris). Given a Milnor square (2.3.5), there is an exact
sequence

GL(S/I) → K0(R) → K0(R/I)⊕ K0(S) → K0(S/I)

Exercise 2.3.9. If f : R → S is a ring map sending I isomorphically onto an
ideal of S, also denoted I, then prove that

K0(R, I) ∼= K0(S, I).

Hint: Show that GL(S)/GL(S ⊕ I) = 1. Then prove that if I ∩ J = 0, then

K0(I + J) = K0(I)⊕ K0(J).

Use this to prove that there is an exact sequence

1 → GL(I) → GL(R) → GL(R/I) δ→ K0(I) → K0(R) → K0(R/I). (2.3.10)

Proposition 2.3.11. There is an exact sequence

K1(R, I) → K1(R) → K0(R/I) → K0(I) → K0(R) → K0(R/I). (2.3.12)

Proof. By Exercise 2.3.9, we know that there is an exact sequence (2.3.10). Pass-
ing to quotients by E(R) and E(R/I) gives exactness of the sequence (2.3.12)
at K1(R/I). By Exercise 2.3.9, it therefore suffices to show that the sequence
(2.3.12) is exact at K0(R). Let g be an element of the kernel of the composite

GL(R) → K1(R) → K1(R/I).

Then we know that the image of g in GL(R/I), is in E(R/I). Write g for this
element of E(R/I). Since the map E(R) → E(R/I) is surjective, there is an
element e ∈ E(R) mapping to g. Consequently, ge−1 maps to 1 ∈ E(R/I) ⊂
GL(R). So ge−1 is in the kernel of GL(R) → GL(R/I), which we denoted
GL(I). Write [ge−1] for the equivalence class of ge−1 in GL(I)/E(R, I).

To summarize, for any g ∈ K1(R) in the kernel K1(R) → K1(R/I), we have
produced a well-defined element [ge−1] in K1(R, I) that maps to K1(R). Thus,
the sequence (2.3.12) is exact at K1(R).

The existence of this sequence was known already in the 1960’s [2], but it
was not known how to extend the sequence to the left. It was expected that
there were groups Kn for all n ∈ Z that produce a long exact sequence, but it
remained an open question until the 1970’s. In Section 2.5, we discuss the first
proposed definition of higher algebraic K-theory groups in the early 1970’s
due to Milnor. This was defined in order to extend the groups K0, K1, and K2,
where K2 is defined in Section 2.4 and the choice of definition of the higher
Milnor K-theory groups is clearly inspired by the definition of K2.
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2.4 The Steinberg group and its center

We now discuss K2 of a ring and the higher Milnor K-theory groups of a field.

Definition 2.4.1. Let A be a ring. Let n ≥ 3, then the Steinberg group Stn(A)
is the group with generators xi,j(r) for a ∈ A and i, j ∈ {1, . . . , n} with i ∕= j
and relations

xi,j(a)xi,j(b) =xi,j(a + b) (2.4.2)

[xi,j(a), xk.ℓ(s)] =

$
%&

%'

1 ifj ∕= k and i ∕= ℓ

xi,ℓ(rs) ifj = k and i ∕= ℓ

xk,j(−sr) ifj ∕= k and i = ℓ,

(2.4.3)

which are called the Steinberg relations.

Exercise 2.4.4. Show that the transvections ei,j(a) in En(A) for n ≥ 3 satisfy
the Steinberg relations.

As a consequence of Exercise 2.4.4, there is a canonical surjective group
homomorphism

Stn(A) → En(A)

for n ≥ 3 mapping xi,j(a) to ei,j(a). Since the Steinberg relations for n include
the Steinberg relations for all k < n, there is a canonical inclusion

Stn−1(A) → Stn(A)

and we define
St(A) =

!
Stn(A).

Exercise 2.4.5. Prove that a level map {Ai} → {Bi} of sequences of groups,
which is a levelwise surjection induces a surjection

colim
i

Ai → colim
i

Bi.

Definition 2.4.6. Let A be a ring. We define K2(A) to be the kernel of the
canonical surjection

St(A) → E(A).

As a consequence of the definition, there is an exact sequence

1 → K2(A) → St(A) → GL(A) → K1(A) → 1.

As defined, it is not clear that K2(A) is an abelian group, because St(A) is
not necessarily abelian. However, it turns out that it is an abelian group.
Moreover, we have the following result of Steinberg, but we omit the proof.
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Theorem 2.4.7 (Steinberg). The group K2(A) is abelian and it is exactly the center
of St(A).

We end by remarking that the group K2 really deserves to be called K2 in
the following sense.

Theorem 2.4.8. Let A be a Dedekind domain with field of fractions F, then there is a
long exact sequence

K2(F) →
"

p∈P

K1(A/p) → K1(A) → K1(F) →
"

p∈P

K0(A/p) → K0(A) → K0(F) → 0

where P is the set of prime ideals in A.

We will prove this as a consequence of the localization sequence and dévis-
sage due to Quillen [15] in 1972 later in the course. However, it is important
to know that the localization sequence as stated in Theorem 2.4.8 had already
been proven by Milnor in 1971 and it appears in [13].

2.5 Milnor K-theory of fields

Milnor extended the definition of K2 to higher algebraic K-theory groups of
fields, now known as Milnor K-theory groups, in the 1970’s.

Let k be a field. We define the tensor algebra of the group of units k to by

T(k×) =
"

i≥0

(k×)⊗i

where (k×)⊗0 = Z. This is also known as the free associative algebra on k×.
Write ℓ(x) for an element in k× in degree 1 corresponding to x ∈ k×. We can
then define Milnor K-theory of a field as a graded ring all at once.

Definition 2.5.1. The Milnor K-theory groups of a field k are

KM
∗ (k) := T(k×)/(ℓ(x)⊗ ℓ(1 − x) : 1 ∕= x ∈ k×)

Note that the ideal generated by the elements ℓ(x) ⊗ ℓ(1 − x) is a homoge-
neous ideal and therefore it makes sense to form the quotient in graded rings.

It is clear that

KM
0 (k) = Z = K0(k) and

KM
1 (k) = k× = K1(k)

for any field k. By a theorem of Matsumoto, KM
2 (k) ∼= K2(k).
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Theorem 2.5.2 (Matsumoto). There is an isomorphism

KM
2 (k) ∼= K2(k)

for any field k.

This motivated Milnor’s definition of higher algebraic K-theory groups.
Note that

K0(Fq) = KM
0 (Fq) = Z and

K1(Fq) ∼= F×
q

which is a cyclic group of order q − 1. In light of this, the following result
gives a complete calculation of the Milnor K-theory of of finite fields.

Proposition 2.5.3. The Milnor K-theory groups KM
n (Fq) vanish for all n ≥ 2. Con-

sequently, there is an isomorphism of graded rings

KM
∗ (Fq) ∼= Z ⊕ F×

q

where Z ⊕ F×
q is the trivial square zero extension of Z by the cyclic group F×

q .

Proof. We first show that
(

F×
q ⊗ F×

q /(x ⊗ (1 − x) : x ∕= 1, 0)
)
= 1.

We write (x ⊗ y) · (z⊗w) for the group operation and 1 for the unit. Note that
F×

q is cyclic of order q − 1 and consequently F×
q ⊗ F×

q is also cyclic of order
q− 1. This cyclic group is generated by x ⊗ x whenever x is a generator of F×

q .
We split into two cases. If q is even, then we know 2x ⊗ x = 0 in Fq ⊗ Fq.

So x ⊗ x = x ⊗ −x. We also know that x ⊗ −x = x ⊗ 1 in KM
2 (Fq) by the

relations and since 1 is the identity in F×
q , the element x ⊗ 1 is trivial in the

group KM
2 (Fq). In other words, we conclude that

x ⊗ x = 1

for all elements x ⊗ x ∈ KM
2 (Fq) where x is a generator of F×

q . This implies
that the group KM

2 (Fq) is trivial. In fact, essentially the same argument implies
that KM

n (Fq) = 0 for n > 2.
When q is odd, we still know that x ⊗ −x = x ⊗ 1 is trivial and conse-

quently, we have skew-symmetry

(x ⊗ y) · (y ⊗ x) = (x ⊗−xy) · (y ⊗−xy) = xy ⊗−xy = 1

in KM
2 (Fq). This immediately implies that (x ⊗ x)2 = 1 and more generally

one can show that
(x ⊗ x)mn = xm ⊗ xn
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when m, n are odd. The set of odd powers of elements in KM
2 (Fq) is exactly

the same as the non-squares, by construction. If there exists a non-square u
such that 1 − u is also a non-square in Fq, then all elements are divisible by
the element u ⊗ (1 − u) = 0, or in other words all elements are trivial. To find
such a u, we note that there is an involution u -→ 1 − u on the set Fq = {0, 1}.
and the set Fq − {0, 1} consists of (q − 1)/2 non squares, but only (q − 3)/2
squares. In other words, there are strictly less squares than non-squares and
there must be an orbit of the C2-action that is completely contained in the
non-squares. Again, essentially the same proof implies that KM

n (Fq) = 0 for
n > 2.

We include this result in order to indicate that Milnor K-theory, though
very interesting in its own right, is this is not the richest invariant. We will
see a different construction of higher algebraic K-theory groups where the
algebraic K-theory of fields are nontrivial in arbitrarily high degrees.



Chapter 3

Group completion algebraic
K-theory

As we hinted at in the beginning of the course, there are really two main fla-
vors of algebraic K-theory: group completion algebraic K-theory and algebraic
K-theory of of a category with a notion of exact sequences. Here we describe
a construction of group completion algebraic K-theory, due to Quillen [14],
known as the +-construction. We then give a sketch of the computation of
algebraic K-theory of finite fields due to Quillen. In the following section,
we define algebraic K-theory of a symmetric monoidal category via the S−1S
construction of Quillen and Segal, see [8].

3.1 The +-construction

This section draws heavily from [19, Chp. 2]. We gave a construction of the
classifying space of a (topological) group in Definition B.1.31. In particular,
we can consider the infinite general linear group GL(R) of a ring R and form
its classifying space BGL(R). This has the property that

πk(BGL(R)) =

*
GL(R) if k = 1
0 otherwise.

and any other CW complex with this property will be homotopy equivalent
to the model for BGL(R) we gave in Definition B.1.31.

In particular, we note that if we want to form a space K(R) with π1(K(R) =
K1(R) then we will have to attach cells to BGL(R) to kill the perfect normal
subgroup E(R) in GL(R). We would also like to not change the space BGL(R)
too much, so we attach cells so that the resulting CW complex BGL(R)+ has
the property that

H∗(BGLR(R)+, BGL(R); L) ∼= 0

25
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for any Z[K1(R)]-module L. In fact, the space BGL(R)+ can be characterized
by this property. In particular, the induced map

H∗(BGL(R); Z) → H∗(BGL(R)+; Z)

is an isomorphism. We will give a different characterization of the +-construction,
which uses the following definition.

Definition 3.1.1. An H-space is topological space X equipped with continuous
maps

µ : X × X → X

and
e : ∗ → X

such that the diagram

X
e×idX!!

idX $$❋
❋❋

❋❋
❋❋

❋❋
X × X

µ

""

X
idX×e##

idX%%①①
①①
①①
①①
①

X

commutes up to homotopy, in the sense that

µ ◦ (e × idX) ≃ idX ≃ µ ◦ (idX × e).

If in addition X is a commutative group object in the homotopy category of
topological spaces ho(Top), then we say that X is a commutative H-group.

Example 3.1.2. Let X be a based topological space. Recall that ΩX = Map∗(S
1, X),

the space of pointed maps from S1 → X, has an operation

ΩX × ΩX → ΩX

given by concatonation of loops and a unit

e : ∗ → ΩX

which sends the basepoint to the constant loop at the basepoint of X. This
does not satisfy unitality on the nose, but it does satisfy unitality up to homo-
topy so ΩX is an H-space.

Definition 3.1.3. The space BGL(R)+ is the initial H-space receiving a map
from BGL(R), in other words, whenever there is a map BGL(R) → Y where
Y is an H-space, then the map factors as

X !!

''❍
❍❍

❍❍
❍❍

❍❍
❍❍

BGL(R)+

""
✤
✤
✤

Y.
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Remark 3.1.4. Note that π1(Y) is abelian whenever Y is an H-space by the
Eckman-Hilton argument. Therefore, π1(BGL(R)+) must be the abelianiza-
tion of π1(BGL(R)) = GL(R) as desired.

We may therefore think of the BGL(R)+ as the H-spacification of BGL(R).
This specifies the space BGL(R)+ up to homeomorphism, but we need to
know that such a space exists. We therefore give an explicit construction.
First, we give our definition of the algebraic K-theory space of a ring R

Definition 3.1.5. Given a ring R, the algebraic K-theory space of R is

K(R) := K0(R)× BGLR+

where K0(R) is regarded as a discrete space. Moreover,

Kn(R) := πn(K(R)).

We now give an explicit construction of X+ for a general path connected
based space X of the homotopy type of a CW complex such that [π1X, π1X] is
a perfect normal subgroup. In fact, there is a plus construction associated to
any perfect normal subgroup N of π1(X), but we leave that generalization to
the reader. In fact, this is the context in which the +-construction was origi-
nally defined by Kervaire in [9], before work of Quillen [14]. Kervaire studied
this construction in the context of n-manifolds that are homology spheres, so
manifolds M such that π1(M) is a perfect subgroup and M+ is homotopy
n-sphere for n ≥ 3.

Construction 3.1.6. Let X be a path connected based space of the homotopy
type of a CW complex such that [π1X, π1X] is a perfect normal subgroup. We
will construct a relative CW complex (X+, X) by attaching cells to X so that
π1(X+) = H1(X; Z) and the relative homology H∗(X̃+, X̂; Z) is trivial where
X̃ is the universal cover of X+ and X̂ is the pullback of the universal cover
along the map X → X+. We can actually accomplish this by only attaching
2-cells and 3-cells to X to form X+.

Write N = [π1X, π1X]. Choose a minimal set of generators eα of the sub-
group N of π1X. Choose a basepoint preserving loop γα : S1 → X for each
homotopy class eα ∈ π1X. We can then form X1 as the the pushout

∐
α

S1 ∐γα !!

""

X

""
∐
α

S1 !! X1

and by construction π1(X1) = π1(X)/N as desired. However, we note that by
the exact sequence in homology

0 → H2(X; Z) → H2(X1; Z) → H1(∐
α

S1; Z)
0→ H1(X; Z)

∼=→ H1(X1; Z)
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the map H2(X) → H2(X1) is not an isomorphism as desired.
Let !X1 → X1 be the universal cover of X1 and let +X be the pullback

+X !!

""

+X1

π

""
X !! X1.

Note that !X1 is formed from +X by attaching 2-cells as well and X̃1 is connected
so +X is also connected. We therefore observe that +X is a Galois covering space
of X corresponding to the normal subgroup N in π1(X) and associated Ga-
lois group π1(X)/N. For each 2-cell aα in the relative CW complex (X1, X),
we can pullback to a collection of 2-cells π−1(aα) of the relative CW com-
plex (X̃1, X̂) and π1(X) acts transitively on these 2-cells with stabilizer group
π1X/N. Therefore, H∗( !X1, +X; Z) is a free Z[π1X/N]-module on generators
[ãα], where ãα is a lift of a 2-cell aα of (X1, X) to ( !X1, +X). We then apply the
Hurewicz homomorphism vertically to the long exact sequence in homotopy
associated to the pair ( !X1, +X) to form the commutative diagram

π2( +X) !!

""

π2( !X1) !!

""

π2( !X1, +X) !!

""

π1( +X1)

""

H2( +X; Z) !! H2( !X; Z) !! H2( !X1, +X; Z) !! H1( +X; Z).

Since N is perfect, H1(X̂; Z) = N/[N, N] = 0. Also, since π1( !X1) = π0( !X1) =
0, the Hurewicz theorem implies that π2( !X) ∼= H2( !X; Z). We know therefore
know the composite map

π2( !X1) → H2( !X1; Z) → H2( !X1, +X; Z)

is surjective. For each [ãα] we choose a lift [ f̃α] to π2( !X1) represented by a
basepoint preserving map f̃α : S2 → !X1. Define

fα = π ◦ f̃α

and let X+ be the pushout

∐
α

S2 fα !!

""

X1

""
∐
α

D3 !! X+.

Remark 3.1.7. At various points in the construction, we made choices. We
leave it to the reader to check that the choices we made do not matter in the
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sense that a different choice would lead to a space that is homeomorphic to
the space X+.

We now have to check that this construction has the desired properties.
First, note that we only attached 3-cells to X1 to form X+, so

π1(X+) ∼= π1(X)/N

as desired.
Write !X+ for the universal cover of X+. Then we have a diagram

+X !!

""

!X1 !!

""

!X+

""
X !! X1 !! X+

where each square in the diagram is a pullback. Again, since X+ was formed
from X by only attaching only 2-cells and 3-cells, we know that !X+ is formed
from +X by attaching only 2-cells and 3-cells. Consequently, the relative cellular
chains C∗( !X+, +X; Z) are concentrated in two degrees

0 → C3( !X+, +X)
d→ C2( !X+, +X) → 0. (3.1.8)

We then observe that there are isomophisms

C3( !X+, +X) ∼= C3( !X+, !X1) ∼= H3( !X+, !X1; Z)

C2( !X+, +X) ∼= C2( !X1, +X) ∼= H2( !X1, +X; Z)

and the boundary map d in (3.1.8) is exactly the boundary map

d : H3( !X+, !X1; Z) → H2( !X1, +X; Z)

associated to the long exact sequence of the triple ( !X+, !X1, +X). Therefore, the
map d from (3.1.8) factors as

d : H3( !X+, !X1; Z)
∂→ H2( !X1; Z)

j→ H2( !X1, +X; Z)

where ∂ is the boundary map in the long exact sequence for the pair ( !X+, !X1)
and j is induced by the canonical map of pairs ( !X1, ∅) → ( !X1, X̂).

We then examine the diagram

. . . !! π3( !X+) !!

""

π3( !X+, !X1)

""

!! π2( !X1)

""

. . . !! H3( !X+; Z) !! H3( !X+, !X1; Z)
∂ !! H2( !X1; Z)
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where the vertical maps are the Hurewicz maps and the horizontal maps are
the long exact sequence of a pair. Given an element

[b̃α] ∈ C3(X̃+, X̃1; Z) ∼= H3(X̃, X̃1; Z)

corresponding to a 3-cell b̃α of the relative CW complex ( !X+, X̃). The attaching
map f̃α : S2 → !X1 of the 3-cell of ( !X+, !X1) corresponds to a class [ f̃α] of π2( !X1)
and maps to a class [ f̃α] in H2(X̃1; Z). So by inspection [b̃α] maps to [ f̃α] under
the map

δ : H3(X̃+, !X1; Z) → H2(X̃1; Z).

In addition, the map

j : H2(X̃1; Z) → H2( !X1, +X; Z)

sends [ f̃α] to [ãα].
By the same argument as before, H3( !X+, !X1; Z) is a free Z[π1(X)/N]-

module on generators [b̃α] and similarly H2( !X+, +X) is a free Z[π1(X)/N]-
module on generators [ãα] where α ranges over the same indexing set I. Thus,
the map d is an isomorphism of Z[π1(X)/N]-modules and consequently
C∗(X̃+, +X) is acyclic.

Moreover, for any Z[π1(X)/N]-module L, the chains C∗( !X+, +X; L) whose
homology is H∗(X+, X; L) are defined to be

C∗( !X+, +X; L) ∼= L ⊗Z[π1(X)/N] C∗( !X+, +X; Z)

and consequently C∗( !X+, +X; L) is also an acyclic chain complex. In particular,

H∗(X; Z) → H∗(X+; Z)

is an isomorphism. Moreover, we have shown the following.

Lemma 3.1.9. For any Z[π1X]-module L, the groups

H∗(X+, X; L) ∼= 0.

We still need to show that X+ satisfies the universal property of Definition
(3.1.3). The proof will be by obstruction theory. First, we give a general setup
of obstruction theory.

Let (X, A) be a based relative CW complex with base point x0 ∈ A. As-
sume that X and A are path connected. Given a continuous pointed map
f : A → Y where Y is path connected,

1. when does there exist an extension F

A
f
!!

i
""

Y

X
F

((⑧
⑧

⑧
⑧
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such that the diagram commutes, where i : A → X is the canonical
inclusion?

2. Given two such extensions F, F′ : X → Y such that F|A = F′|A = f ,
when is there a homotopy H : X × I → Y rel A from F to F′ ?

Write Xn for the n-skeleton of X. Then we can always extend

A
f
!!

i
""

Y

X1

F1

))⑦
⑦

⑦
⑦

because if g : ∐ S0 → A is the attaching map for attaching the 1-cells to A to
form X1, when composing this map with f

∐ S0 → A → Y

necessarily produces a null homotopy map, because Y is path connected.
therefore, we can let F1 be any null homotopic basepoint preserving map
F1 : X1 → Y. Note that π1(X2) ∼= π1(X), so if it is possible to extend further

A
f
!!

""

Y

X1

""
X2

F2

**✎
✎
✎
✎
✎
✎
✎
✎

(3.1.10)

then there would be a homomorphism θ in a commuting diagram

π1 A
f
!!

""

π1Y

π1X
θ

++②
②

②
②

(3.1.11)

In fact, this is an if and only if, so if there is a group homomorphism θ : π1X →
π1Y making the diagram commute, then there exists an extension F2 making
the diagram (3.1.10) commute.

Now suppose A extends to X2 and fix a group homomorphism θ : π1X →
π1Y such that the diagram (3.1.11) commutes. Now suppose we want to
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extend A to X3

A
f
!!

""

Y

X3

F3

))⑦
⑦

⑦
⑦

(3.1.12)

compatible with the extensions F1 and F2, which amounts to asking that on
π1 the diagram (3.1.12) is the diagram (3.1.11) up to isomorphism. Recall that
π1(Y) acts on πi(Y) for i ≥ 1, so πi(Y) is a Z[π1Y]-module for all i ≥ 2 (and
all i ≥ 1 if Y is an H-space, as is the case in our main example of interest).
Since we have a group homomorphism θ : π1(X) → π1(Y) by assumption,
this induces a map Z[π1X] → Z[π1Y] of group rings and therefore we may
regard πi(Y) as a Z[π1X]-module θ∗πi(Y) via restriction.

We therefore proceed by induction up the skeleta of X. Suppose we have
an extension Fn : Xn → Y of f to Xn for some n ≥ 2 such that π1(Fn) =
θ : π1(Xn) = π1X → π1Y. Then we can define an obstruction cocycle giving
an obstruction class

Obn+1(θ, Fn) ∈ Hn+1(X, A, θ∗πn(Y))

in the cohomology of the pair (X, A) with coefficients in the Z[π1X]-module
θ∗πn(Y). The vanishing of this obstruction class is a necessary and sufficient
condition for Fn to extend further to Fn+1 : Xn+1 → Y such that Fn+1|Xn = Fn.
When Hn(X, A, θ∗πn(Y)) ∼= 0 for all n ≥ 2, then f extends to X.

The second question may actually be regarded as a special case of the first
for the pair (X × I, X × {0, 1} ∪ A × I). Recall that by Van Kampen

π1(X × {0, 1} ∪ A × I) ∼= π1(X) ∗π1(A) π1(X)

and the map
π1(X × {0, 1} ∪ A × I) → π1(X)

is the canonical quotient. Defining f̃ : X × {0, 1} ∪ A × I → Y by

f̃ |X×0 =F

f̃ |X×1 =F′

f̃ |A×I = f ◦ π1(x, t)

where π1 : A × I → A is projection onto the first factor. Then we can say
that F is homotopic to F′ rel A if and only if the map f̃ extends to a map
F̃ : X × I → Y. Again, f̃ will extend to the 2-skeleton of X × I if θ̃ = π1(F) =
π1(F′) : π1X → π1Y by the calculation of fundamental groups above. For
n ≥ 1, the obstructions lie in

Hn+2(X × I, X × {0, 1} ∪ A × I; θ̃∗πn+1(Y)))
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but by inspection of the suspension homomorphism these groups are isomor-
phic to

Hn+1(X, A; θ̃∗πn+1(Y))).

We therefore have an obstruction class

Obn+1(θ, F, F′) ∈ Hn+1(X, A; θ̃∗πn+1(Y)))

which is trivial if and only if there is exists a homotopy H : F ≃ F′ rel A.
If Hn(X, A; θ̃∗πn(Y))) ∼= 0 for n ≥ 2, then there always exists a homotopy
H : F ≃ F′ rel A.

We now summarize in our special case.

Theorem 3.1.13. Let X be a based path connected space. The construction X+ of
(3.1.6) has the universal property that for any based path connected commutative H-
group Y with a map X → Y, then there exists a lift h, that is unique up to homotopy

X !!

,,❇
❇❇

❇❇
❇❇

❇ X+

h
""
✤
✤
✤

Y

Proof. Since Y is path connected, there is no obstruction to extending to the
1-skeleton of X+ (the one skeleton of X+ is X anyways, so there is nothing to
show). The obstruction to extending X to the 2-skeleton of X+ is the existence
of a group homomorphism θ : π1(X+) → π1(Y) such that the diagram

π1(X) !!

''❏
❏❏

❏❏
❏❏

❏❏
π1(X+)

θ
""

π1(Y)

commutes. This group homomorphism exists by the universal property of
π1(X+) = π1(X)/[π1(X), π1(X)] =: π1(X)ab since π1(Y) is necessarily an
abelian group. Finally, the obstructions to existence of an extension h : X+ →
Y and uniqueness of such a map live in H∗(X+, X; θ∗π∗Y), but these groups
vanish by Lemma 3.1.9. Therefore, there exists an extension X+ → Y and this
extension is unique up to homotopy rel X as desired.

Remark 3.1.14. Note that we still need to show that X+ is in fact an H-space.
We will do this shortly. First, we give an example.

Example 3.1.15. Consider the colimit

Σ := ∪n≥0Σn

of Σn along the inclusions Σn → Σn+1 sending an automorphism of the finite
set {1, . . . , n} to the corresponding automorphism of the finite set {1, . . . , n +
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1} fixing n + 1. Then the inclusion of the alternating An → Σn is compatible
and produces an inclusion of A = ∪n≥0 An in Σ with quotient Z/2. The
group A is in fact a perfect normal subgroup of Σ and we can form the +-
construction with respect to this perfect normal subgroup. This gives a space
BΣ+ such that π1(BΣ+) ∼= Z/2. In fact, we have the following theorem of
Barratt-Priddy-Quillen.

Theorem 3.1.16 (Barratt-Priddy-Quillen). There is an isomorphism

πs
k(S

0) → πk(Z × BΣ+)

for k ≥ 0, where πs
kS0 is the k-th stable homotopy groups of spheres.

Remark 3.1.17. We should think of Z × BΣ+ as an explicit model for the
algebraic K-theory space K(Fin) of the category of finite sets. We will prove
this later.

Theorem 3.1.18. The space BGL(R)+ is an commutative H-group and the map
BGL(R)+ → Y is a map of H-spaces whenever Y is an H-space.

We first define a multiplication

µ : BGL(R)+ × BGL(R)+ → BGL(R)+.

As we noted in the appendix, geometric realization commutes with finite
products, so we first define an operation

µ0 : GL(R)× GL(R) → GLR(R)

and then define a map

Bµ0 ◦ h: BGL(R)× BGL(R) → BGL(R)

where h is the homotopy equivalence

h : BGL(R)× BGL(R) ≃→ B(GL(R)× GL(R)).

We define µ0(A, B) for matrices A, B ∈ GL(R) by the formula

µ0(A, B) = (ci,j)

for 0 ≤ i, j ≤ n + m where

ci,j =

$
%&

%'

ak,ℓ if i = 2k − 1, j = 2ℓ− 1
bk,ℓ if i = 2k, j = 2ℓ
0 otherwise

where A = (ak,ℓ) for 0 ≤ k, ℓ ≤ n and B = (bk,ℓ) for 0 ≤ k, ℓ ≤ m. We leave
the following results as simple exercises.
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Exercise 3.1.19. The map µ0 is a group homomorphism.

Exercise 3.1.20. There is a homotopy equivalence

h′ : BGL(R)+ × BGL(R)+ → (BGL(R)× BGL(R))+ .

We therefore have an induced map

µ : BGL(R)+ × BGL(R)+ → BGL(R)+

We now construct an inverse. First, let u : N → N be an injective self-map
of the set of positive integers. Define

u• : GL(R) → GL(R)

where A = (ai,j) by

u•(A) =

*
ai,j if (i, j) = (u(i), u(j))
δi,j otherwise

where δi,j = 1 if i = j and 0 otherwise.

Exercise 3.1.21. The map u• is a group homomorphism.

Lemma 3.1.22. For each u•, there is an induced homotopy equivalence

u+ : BGL(R)+ → BGL(R)+.

Proof. By Exercise 3.1.21, the map u• induces a map u+ : BGL(R)+ → BGL(R)+.
This induces a K1(R)-equivariant self-map

u : BE(R)+ → BE(R)+

of the universal cover !BGL(R)+ = BE(R)+. Since BE(R)+ is simply con-
nected, it suffices to check that

H∗(u; Z) : H∗(BE(R)+; Z) → H∗(BE(R)+; Z)

is an isomorphism by the Whitehead theorem. To see this, we note that u is
induced by the map u•|E(R) : E(R) → E(R), which is equal to conjugation
by some matrix C so the induced map H∗(u) is also given by conjugation by
C, but inner conjugation induces the identity map on group homology with
integer coefficients.

Exercise 3.1.23. Let M be the monoid of injective self maps of N under com-
position, then K0(M) ∼= 0.
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Consequently, any u+ is homotopic to the identity via basepoint preserv-
ing maps.

We say group homomorphisms f , g : G → GL(R) are pseudo-conjugate if
there exists u ∈ M, from Exercise 3.1.23, such that either u• ◦ f and g or f and
u• ◦ g are conjugate by an element in GL(R).

Proposition 3.1.24. If f , g : G → GL(R) are pseudo-conjugate, then the induced
maps f+, g+ : BG → BGL(R)+ are homotopy as maps preserving the basepoints

Proof. For any map f : G → GL(R) write f ′ for

f ′(−) = µ( f (−), 1).

Then f ′ is homotopic to f by a base point preserving homotopy because f ′ =
v• ◦ f . where v ∈ M is defined by v(s) = 2s − 1.

Suppose f , g : G → GL(R) satisfy g(−) = α(u• ◦ f (−))α−1 := (u• ◦ f (−))α

for α ∈ GL(R). Letting β = µ(α, α−1) ∈ E(R), then µ(g, 1) = µ(u• ◦ f , 1)β. So
the induced maps

BG → BGL(R)

are homotopic such that under a homotopy, the image of the base point of
BG is is a loop homotopic to [β] ∈ π1BGL(R) = GL(R). The induced maps
BG → BGL(R)+ are homotopic preserving the base points since [β] = 0 ∈
π1(BGL(R)+).

We can now prove that BGL(R)+ is a commutative H-space with operation

µ : BGL(R)+ × BGL(R)+ → BGL(R)+

and identity given by inclusion of the basepoint e : ∗ → BGL(R) → BGL(R)+.

Proof of Theorem 3.1.18. Let v, w ∈ M of Exercise 3.1.23 be given by v(s) =
2s − 1 and w(s) = 2s for all s ∈ N. Then for any A ∈ GL(R), we have that
v• ◦ A = µ(A, 1) and w• ◦ A = µ(1, A). By construction, the composite

BGL(R)+ × ∗→ BGL(R)+ × BGL(R)+
µ+

→ BGL(R)+

is homotopic to v+ and the the composite

∗ × BGL(R)+→ BGL(R)+ × BGL(R)+
µ+

→ BGL(R)+

is homotopic to w+. So the inclusion e : ∗ → BGL(R)+ is a two-sided identity
up to pointed homotopy. Consequently, BGL(R)+ is an H-space.

There exists v′, w′ ∈ M such that for any x, y, z ∈ GL(R)

µ(x, y) = v′ ◦ µ(y, x)

µ(µ(x, y), z) = w′ ◦ µ(x, µ(y, z))

so BGL(R)+ is homotopy commutative and homotopy associative. Since it is
path-connected and it is the homotopy type of a CW complex it is in fact a
commutative H-group by [19, Cor. A.47].
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3.2 Algebraic K-theory of finite fields

We will simply record the final result.

Theorem 3.2.1 (Quillen). Let Fq be a finite field of order q, then there is an isomor-
phism

Kn(Fq) ∼=

$
%&

%'

Z if n = 0
Z/(qk − 1) if n = 2k − 1 for k ≥ 1
0otherwise

The proof is sadly a sin of omission for the time being. Add later.

3.3 The S−1S-construction

This is also sadly a sin of omision for right now. Add later.
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Chapter 4

The Q-construction and
fundamental theorems

In this chapter, we first setup and prove Quillen’s famous Theorem A and
Theorem B. These will be used in a key way for proving theorems about the
Q-construction of algebraic K-theory. We then give Quillen’s Q-construction
of algebraic K-theory and prove some basic properties. We then prove some of
the fundamental theorems of algebraic K-theory using this construction. The
primary reference for this material is the original paper of Quillen [15].

4.1 Quillen’s Theorem A and Theorem B

Recall from Definition B.1.30, that given a small category C, we can form an
associated simplicial set N•C.

Definition 4.1.1. Let C be a small category and let N•C be the simplicial set
with n-simplices

NnC = Fun([n], C)
then we define the classifying space of C to be

BC := |N•C|.

In this section, we will study the homotopy theory of small categories, by
which we mean the homotopy theory of spaces that arise as the classifying
space of a small category. Throughout this section, we assume all categories
are small categories unless otherwise specified. The following definition will
be used in several places.

Definition 4.1.2. The comma category S ↓ T associated to a pair of functors

S : A→ C ←B : T

39
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has objects (a ∈ A, b ∈ B, α : S(A) → T(B)) and morphisms (a, b, α) →
(a′, b′, α′) given by triples

f : a → a′

g : b → b′

and a commuting diagram

S(a)
S( f )
!!

α

""

S(a′)

α′

""
T(b)

T(g)
!! T(b′)

where composition is defined in the evident way.

Examples 4.1.3. Given a category C and an object X ∈ C, we define the slice
category C/X to be the comma category corresponding to the span of cate-
gories

C idC→ C X← [0]

and we define the coslice category X\C to be the comma category associated
to the span of categories

[0] X→ C idC← C.

We also define f /Y, where f : C → C ′ is a functor and Y is an object in C ′

to be the comma category associated to the span of categories

C f→ C ′ X← [0]

and similarly we define X\ f to be the comma category associated to the span
of categories

[0] X→ C ′ f←C

The following lemmas will be of fundamental importance.

Lemma 4.1.4. A natural transformation η : f ⇒ g between functors

f , g : C → D

induces a homotopy
H : BC × I → D

between B f and Bg.
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Proof. The triple ( f , g, η) defines a functor

( f , g, η) : C × [1] → D

sending (c, 0) to f (c), (c, 1) to g(c) and (c, 0 → 1) to η : f (c) → g(c). It is
defined on morphisms in the evident way. We then apply the nerve and note
that

N•(C × [1]) = N•(C)× ∆1

and by a result of Milnor geometric realization commutes with finite products
so the functor ( f , g, η) induces a continuous map

H : BC × I → BD

such that H|BC×{0} = B f and H|BC×{1} = Bg as desired.

As a consequence of this, we can also prove the following lemma of fun-
damental importance.

Lemma 4.1.5. If a functor
f : C → D

has a right or a left adjoint, then f induces a homotopy equivalence

B f : : BC ≃ BD.

Proof. Suppose f has a right adjoint g. The proof when f has a left adjoint is
essentially the same so we omit it. Then there are natural transformations

η : idC → g ◦ f and ε : f ◦ g → idD

which induce homotopies

H1 : BC × I → BC and H2 : BD × I → BD

from idBC to Bg ◦ B f and from B f ◦ Bg to idBD respectively.

Definition 4.1.6. We say a category C has an initial object 0 if for all objects
c ∈ C there exists a unique morphism 0 → c. Similarly, we say that C has a
terminal object 1 if for all objects c ∈ C there exists a unique morphism c → 1.

Lemma 4.1.7. If C has an initial or terminal object then BC is contractible.

Proof. The existence of an initial object in C is equivalent to the existence of
a left adjoint to the functor [0] → C sending 0 to the initial object 0 of C.
Similarly, the existence of a terminal object is equivalent to the existence of a
right adjoint to the functor [0] → C sending 0 to the terminal object 1 of C.

We first give a characterization of π1(BC), but we will not give a complete
proof. See [19, Lemma 6.1.] for a careful proof of most of the statements. First,
we give a definition.
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Definition 4.1.8. We say that a functor F : C → D is morphism inverting if for
all morphisms f in C, then F( f ) is an isomorphism.

Theorem 4.1.9. There is an equivalence of categories between the category of cov-
erings of BC, denote Cov(BC) and the category of morphism inverting functors
C → Set, which we denote Funinv(C, Set). Moreover,

π1(C, X) ∼= HomC(X, X)gp

where HomC(X, X)gp is group completion of the monoid HomC(X, X).

We will just sketch the proof. Given a covering space E → BC, we consider
the fiber E(X) over an object X ∈ C regarded as a 0-cell of the CW complex
BC. A map f : X → X′ induces an bijection E( f ) : E(X) ∼= E(X′) of sets
satisfying E( f ◦ g) = E( f ) ◦ E(g). Thus, we may regard E as a functor

E : C → Set

that sends all maps f to bijections E( f ) as desired.
In the other direction, given a functor F : C → Set we post-compose with

the inclusion Set → Cat sending a set S to the category with objects S and only
identity morphisms, and denote this functor F by abuse of notation. Then we
define the [0]\F to be the comma category associated to the functors

[0]
[0]→ Cat

F←C

where the left functor sends 0 to the category [0]. In other words, unpacking
the definition, [0]\F has objects specified by a pair (X, ∗ → F(X)) and mor-
phisms f : X → X′ along with a basepoint preserving map F(X) → F(X′).

Lemma 4.1.10. The forgetful functor [0]\F → C induces a covering

B([0]\F) → BC

when F : C → Set is morphism inverting.

Proof. This follows from [6, Appendix I 3.2J].

There is a way to formally add inverses to all morphisms in a small cat-
egory C to form a groupoid G = C[Arr(C)−1] [6, Chapter I, 1.1]. The group
π1(BC, X) is then the automorphisms of X in this groupoid G. Moreover, the
category of morphism inverting functors

C → Set

is equivalent to the category of functors

G → Set
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which we refer to as the category G-Set of G -sets. When BC is path con-
nected with a 0-simplex X, then the category of coverings of BC is equivalent
to the category GX-Set of GX-sets in the traditional sense where GX is the
automorphism group of X in the groupoid G = C[Arr(C)−1].

Definition 4.1.11. We say a category I is a filtered category if it is nonempty
and for any two objects x, y there exists an object z and morphisms x → z
and y → z and for any two morphisms f , g : x → y there exists a morphism
h : y → z such that h ◦ f = h ◦ g.

Proposition 4.1.12. Given a functor

I → Cat

from a filtered category I to the category of small categories Cat with limit C, where
we denote Ci the functor evaluated at i, then

colim
i

πnBCi ≃ πnBC

for all n ≥ 0.
If in addition, BCi → BCj is a homotopy equivalence for all maps i → j in I, then

there is a homotopy equivalence
BCi ≃ BC

for all i.

Corollary 4.1.13. Any filtered category I is contractible.

Theorem 4.1.14 (Theorem A). If f : C → C ′ is a functor and the category A\ f is
contractible for all objects A ∈ C ′, then

B f : BC → BC ′

is a homotopy equivalence. Similarly, when f /Y is contractible for all objects A ∈ C ′,
then the map B f is a homotopy equivalence.

We will just prove the case A\ f since the other version is formally dual in
a precise sense. First, we will need the following definition.

Definition 4.1.15. We also need the following variant of the twisted arrow
category, denoted Tw( f ) where f : C → C ′ is a functor. The objects in Tw( f )
are the same as the objects of the comma category associated to

C ′ id→ C ′ F→ C

and the morphisms from (x, y, α : x → F(y)) to (x′, y′, α′ : x′ → F(y′)) consist
of maps u : x → x′ and w : y′ → y such that the diagram

x α !!

u
""

F(y)

x′
α′
!! F(y′)

F(w)

--
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commutes. Composition is defined by evident vertical composition of squares.
When f : C ′ → C ′ is the identity idC ′ , we simply write Tw(C ′) := Tw(idC ′) and
we observe that this is the usual twisted arrow category.

The following construction will also be integral to the proof.

Construction 4.1.16. Given a bisimplicial space, or in other words a functor

X•,• : ∆op × ∆op → Top

we can form the geometry realizations

|X•,n| : ∆op → Top

and
|Xn,•| : ∆op → Top

for each [n] in ∆op and these are functorial in the variable [n]. One can also
form a simplicial object △∗X•,• with n-simplices Xn,n by precomposition with
the diagonal

△∗X•,• : ∆op △→ ∆op × ∆op → C.

Lemma 4.1.17 (Realization lemma). There are homeomorphisms

|[n] -→ |Xn,•|| ∼=|[n] -→ |X•,n||
∼=|△∗X•,•|

Proof. ADD PROOF

Proof of Theorem A.. Let f : C → C ′ be a functor. Consider the diagram of
categories

(C ′)op π1←Tw( f )
π2→ C

where π1(x, y, α : x → f (y)) = x and π2(x, y, α : x → f (y)) = y and these
functors are defined on morphisms and composition in the evident way. We
form a bisimplicial set Tp,q with p, q simplices given by pairs

(yp → · · · → y0 → f (x0), x0 → . . . xq)

where yp → · · · → y0 → f (x0) is an object in Fun([p], (C ′/ f (x0))
op) and

x0 → . . . xq is an object in Fun([q], C). where face maps in p direction (resp.
q direction) composes xi+1 → xi → xi−1 to form a map xi+1 → xi−1 and de-
generacies are given by inserting an identity, in the same way that we defined
the nerve of a category. By forgetting the first component, there is therefore
an evident map

Tp,q → NqC



4.1. QUILLEN’S THEOREM A AND THEOREM B 45

of bisimplicial sets, where we regard NqC is constant in p. Upon geometric
realizations, using any of the three equivalent constructions, we produce a
map

Bπ2 : BTw( f ) → BC.

If we first, geometrically realize with respect to p, then we produce a map of
simplicial spaces defined on q-simplices by

∐
x0→...xq

B(C ′/ f (x0)
op) → ∐

x0→...xq

∗

Since C ′/ f (x0) has a final object and BD ∼= BDop, we know that B(C ′/ f (x0)
op)

is contractible this map is a weak equivalence. Since both sides are Reedy
cofibrant (we will not go into detail on this point) this map induces a weak
equivalence

BTw( f ) ≃ BC
We similarly have a functor

Tp,q → N•((C ′)op).

Taking geometric realization with respect to q, we produce a map

∐
yp→···→y0

B(yo\ f ) → ∐
yp→...y0

∗ = Np(C ′)op.

By assumption, B(yo\ f ) is contracible so the map is a weak equivalence.

BTw( f ) → B(C ′)op ∼= B(C ′).

This shows that BC ′ and BC are homotopy equivalent, but we still want to
know that the functor f : C → C ′ induces a homotopy equivalence. Note that
the construction Tw( f ) is functorial in functors to C ′, so we have a functor

Tw( f ) → Tw(idC ′) = Tw(C ′)

and the projection maps are also natural so there is a commutative diagram

(C ′)op

idC′
""

Tw( f )
π1## π2 !!

""

C

f
""

(C ′)op Tw(C ′)
π1## π2 !! C ′

The same argument as before proves that the functor Bπ1 : BTw(C ′) → BC ′ is
a homotopy equivalence by simply observing that

B(y0\ idC ′) = B(y0\C ′)

which clearly has an initial object. Therefore, we observe that the functor
f : C → C ′ induces a homotopy equivalence BF : BC → BC ′ as desired.
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The following special case is also of interest. For this special case, we need
a definition.

Definition 4.1.18. We say f : C → C ′ is pre-fibered if and only if the subcategory
f−1(y), which is the full subcategory of C whose objects are x such that f (x) =
y, equipped with a canoncial functor

f−1(y) → y\ f

sending x to (x, id : f (x) → y) has a right adjoint. We say f is pre-cofibered if
the same canonical functor has a left adjoint. Denote the right adjoint (resp.
left adjoint) by (x, v) maps to v∗x (resp. (x, v) maps to v∗X) when f is pre-
fibered (resp. cofibered). Then for any map v : y → y′ in C ′, there is a functor

v∗ : f−1(y) → f−1(y′)

(respectively there is a functor v∗ : f−1(y) → f−1(y′)). We say f is fibered if for
every pair of composable morphism v, w in C ′ there is a natural isomorphism

v∗w∗ → (v ◦ w)∗

of functors (resp. we say f is cofibered if there is a natural isomorphism (v ◦
w)∗ → v∗ ◦ w∗ →). We call v∗ base change and v∗ cobase change.

Corollary 4.1.19. Suppose f : C → C ′ is either pre-fibered or pre-cofibered and sup-
pose that f−1(y) is contractible for all y ∈ C ′, then B f is a homotopy equivalance.

We first introduce some terminology.

Definition 4.1.20. Given a map of based topological spaces f : (E, e) → (B, b),
we can form the pullback

F( f ) !!

""

BI

""
E × ∗

f×b
!! B × B

which we call the homotopy fiber of the map f . We say f : E → B is a quasi-
fibration if the map f−1(b) → F( f ) is a weak equivalence, meaning it induces
an isomorphism on all homotopy groups for all basepoints.

Construction 4.1.21. Since the homotopy fiber sequence F( f ) → E → B in-
duces a long exact sequence in homotopy groups

· · · → πi+1(B, b) → πi(F( f ), e) → πi(E, e) → πi(B, b) → . . .

where e = (e, constb), we have a long exact sequence in homotopy groups

· · · → πi+1(B, b) → πi( f−1(b), e) → πi(E, e) → πi(B, b) → . . .

as well whenever E → B is a quasi-fibration.
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The following is a generalization of this construction that will be useful for
our setup.

Definition 4.1.22. Given a diagram

X !!

""

Y

""
Z !! W

(4.1.23)

in Top, define the homotopy pullback to be the pullback of the diagram

hPB !!

""

W I

""
Z × Y !! W × W

and we say (4.1.23) is a homotopy pullback diagram if X → hPB is a homotopy
equivalence equivalence.

As a special case note that, when Z = ∗, then (4.1.23) is a homotopy pull-
back diagram when Y → W is a quasi-fibration, in fact the diagram (4.1.23)
is a homotopy pullback whenever Z is contractible and Y → W is homotopy
equivalent to quasi-fibration.

Theorem 4.1.24 (Theorem B). Let f : C → C ′ be a functor such that for every map
v : y → y′ the induced functor v\ f : y\ f → y′\ f is a homotopy equivalence. Then
for every y ∈ C ′, there is a homotopy pullback

By\ f !!

""

BC

""
By\C ′ !! BC ′

where By\C ′ is contractible because the category y\C ′ has an initial object. Moreover,
there is a long exact sequence in homotopy groups

· · · → πi+1(BC ′, y) → πi(y\ f , x) → πi(BC, x) → πi(BC ′, y) → . . .

where x = (x, idy : y → f (x)).

Remark 4.1.25. Again there is a dual formulation in terms of the categories
f /y, but we leave the formulation and the proof to the reader.

First, we need three lemmas about quasi-fibrations.

Lemma 4.1.26. Let p : E → B be a continuous map, and let U, V ⊂ B be open
subsets such that U ∪ V = B. Suppose p|p−1(U), p|p−1(V), and p|p−1(U∩V) are
quasi-fibrations, then p is a quasi-fibration.
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Proof. We know U ∩ V is the pullback of

U ↩→ B ←↪ V

so Fib(p−1(U ∩ V) → U ∩ V) is the pullback of Fib(p−1(U) → U) and
Fib(p−1(V) → V) along Fib(p). If x ∈ B then there is a weak equivalence
p−1(V) ∩ p−1(x) ≃we Fib(p−1(V) → V) if x ∈ V and there is a weak equiva-
lence p−1(U) ∩ p−1(x) ≃we Fib(p−1(U) → U) if x ∈ U by assumption. Also,
if x ∈ U ∩ V, then there is a weak equivalence p−1(U ∩ V) ∩ p−1(x) ≃we
Fib(p−1(U ∩ V) → U ∩ V) by assumption. Therefore,

p−1(x) =p−1(B) ∩ p−1(x)

=(p−1(U) ∪ p−1(V)) ∩ p−1(x)

=(p−1(U) ∩ p−1(x)) ∪p−1(U∩V)∩p−1(x) (p−1(V) ∩ p−1(x))

≃weFib(p−1(U)) ∪Fib(p−1(U∩V)) Fib(p−1(V))

≃weFib(p).

as desired.

Lemma 4.1.27. Let p : E → B be a continuous map onto B, let B′ ⊂ B be a subspace
and let E′ = p−1(B′) and assume that p|E′ is a quasi-fibration. Suppose there is a
fiber preserving deformation; i.e. suppose there are homotopies

D : E × I → E and d : B × I → B

such that D(−, 0) = idE, d(−, 0) = idB, Dt(E′) = E′, dt(B′) = B′ and D1(E) ⊂
E′ and d1(B) ⊂ B′.

Additionally, assume that p−1(x) → p−1(d1(x)) is a weak equivalence for all
x ∈ B then p is a quasi-fibration.

Proof. Since D (resp. d) is a homotopy from idE (resp. idB) to some other map,
we know that for x ∈ B and y ∈ p−1(x)

(d1)∗ : πn(B, x) ∼=πn(B′, d1(x)),

(D1)∗ : πn(E, y) ∼=πn(E′, D1(y)).

Since p ◦ D1 = d1 ◦ p, we know D−1
1 (p−1(x)) ⊂ p−1(d1(x)) and we have a map

of long exact sequences from the long exact sequence of the pair (E, p−1(x))
to the long exact sequence of the pair (E′, p−1(d1(x)). We know

(D1)∗ : πi(p−1(x); y) ∼= πi(p−1(d1(x)); D1(y))

by hypothesis, we know by the 5-lemma that

(D1)∗ : πi(E, p−1(x); y) ∼= πi(E′, p−1(d1(x)); D1(y))
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so in the diagram

πi(E, p−1(x); y)
∼=!!

""

πi(E′, p−1(d1(x)); D1(y))

∼=
""

πi(B, x)
∼= !! πi(B′, x)

we have shown that all maps except the right most map are isomorphisms,
and consequently the right map is also an isomorphism.

Lemma 4.1.28. Let p : E → B be continuous map. Assume that B is CW complex
with n-skeleton Bi and assume that p|p−1(Bi)

is a quasi-fibration for each i, then p is
a quasi-fibration.

Proof. Any compact subset of B lies inside of some Bi so any compact subset of
E lies inside of some p−1Bi = Ei. Consequently, given x ∈ Bi and y ∈ p−1(x),
then the homotopy groups of the pair E, p01(x) satisfy

πn(E, p−1(x); y) ∼=colim
j

πn(p−1(Bj), p−1(x); y)

∼=colim
j

πn(Bj, x) ∼= πn(B, x).

since each map Ei → Bi is a quasi-fibration.

Proposition 4.1.29. Suppose I is a small category and X : I → Top is a functor. We
form a simplicial space by

∐
i0→i1→...in

X(i0)

where the face and degeneracy maps are induced by functoriality of X and the nerve
construction of I, which we index over. There is an obvious map of simplicial spaces
from this simplicial space to the nerve of I given on n-simplices by

∐
i0→i1→...in

X(i0) → ∐
i0→i1→...in

∗.

Suppose that Xi → Xj is a weak equivalence for all maps i → j in I, then the map
induced on geometric realizations

π : XI → BI

is a quasi-fibration where

XI := |[n] -→ ∐
i0→i1→...in

X(i0)|



50CHAPTER 4. THE Q-CONSTRUCTION AND FUNDAMENTAL THEOREMS

Proof. We need to check that the canonical map π−1(i) → Fib(π) is a homo-
topy equivalence. It suffices to check that when restricting to the p-skeleton of
BI; i.e. we need to check that the map π−1((BI)p) → (BI)p is a quasi-fibration
for each p ≥ 0. We proceed by induction up the skeleta. The inductive hypoth-
esis holds because on zero 0-cells the map is a trivial fibration. We consider
the map from the diagram

∐
i0→···→ip∈NDp(N• I)

Xi0 × δ∆p !!

""

π−1((BI)p−1)

""

∐
i0→···→ip∈NDp(N• I)

Xi0 × ∆p !! π−1((BI)p)

to the diagram

∐
i0→···→ip∈NDp(N• I)

δ∆p !!

""

π−1((BI)p−1)

""

∐
i0→···→ip∈NDp(N• I)

∆p !! π−1((BI)p),

where NDp(N• I) denotes the non-degenerate p-simplices of N• I, in order to
do an induction up the skeleta. We assume that we know that p|(BI)p is a
quasi-fibration.

Let U be the space formed from (BI)p by removing the barycenter of each
p-cell. Let V = (BI)p − (BI)p−1. It suffices, by Lemma 4.1.26 to show that
π|U , π|V and π|U∩V are all quasi-fibrations. This is clear for π|V and πU∩V
because each map is homeomorphic to a trivial fibration.

By our inductive hypothesis, we can assume that π|BIp−1 is a quasi-fibration.
To apply Lemma 4.1.27, we construct a fiber preserving deformation D of π|U
to πBIp−1 by considering the radial deformation of ∆p without its barycenter
to δ∆p. Thus, we just need to check that, if our deformation D takes x ∈ U to
x′ ∈ BIp−1, then the map g−1(x) → g−1(x′) induced by D is a weak equiva-
lence. It suffices to consider x ∈ BIp − BIp−1. Consequently, we can let x come
from the interior point z of ∆p, where the interior of ∆p is ∆p − δ∆p. Suppose
this ∆p corresponds to the non-degenerate p-simplex s = (i0 → . . . ip). Our
radial deformation takes z to some open face of ∆p, say the open face with
vertices j0 < j1 < . . . jq, where {j0, . . . , jq} ⊂ {0, . . . , p}. Then g−1(x) = Xi0
and g−1(x′) = Xk where k = ij0 and the map Xi0 = g−1(x) → g−1(x′) = Xk is
the map induced by i0 → ik coming from the face of s (note that this is some
composite of the face maps of N• I, which are all given by composing adja-
cent composable morphisms). Since we assumed that these maps are weak
equivalences, the proof is complete.
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Corollary 4.1.30. Under the hypotheses of Theorem 4.1.24, the induced map

Bπ2 : BTw( f ) → B(C ′)op

is a quasi-fibration for any functor f : C → C ′.

Proof. Consider the functor X : (C ′)op → Top sending y to X(y) = By\ f . Then
since for v : y → y′ the induced map Bv\ f is a homotopy equivalence we can
apply Proposition 4.1.29. In this case X(C ′)op = BTw( f ) as we noted earlier so
the proposition implies that

BTw( f ) → B(C ′)op

is a quasi-fibration.

Proof of Theorem B. We will prove Theorem 4.1.24 assuming Lemma 4.1.30.
Consider the following diagram as in the proof of Theorem 4.1.14

y\ f !!

""

Tw( f )

f ′

""

≃ !! C

f
""

y\C !!

≃
""

Tw(C ′)
≃ !!

≃
""

C ′

[0] !! C ′

where the maps indicated with ≃ are maps inducing homotopy equivalences
on classifying spaces, as we have already discussed. The vertical map

BTw( f ) → BTw(C ′) → BC ′

is Bπ2, which is homotopy equivalent to the map B f : BC → BC ′ in the top
right square as we have already shown in the proof of Theorem 4.1.14. Since
BTw( f ) → B(C ′)op is a quasi-fibration by Lemma 4.1.30, we know that the two
squares on the left are homotopy pullbacks. This implies the theorem.

4.2 The Q-construction

We first need to define the input of our construction.

Definition 4.2.1. A Ab-enriched category is a category C such that

HomC(c, c′)

is an abelian group for all c, c′ ∈ ob C and the composition

HomC(c, c′)× HomC(c′, c′′) → HomC(c, c′′)
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is bilinear. An Ab-enriched category is called an additive category if it admits all
finite coproducts. An Ab-enriched category is called abelian if it has all finite
limits and colimits, and every morphism f : A → B decomposes as

A
p
!! coker(ker f )

f
!! ker(coker f ) i !! B

where p is an epimorphism, i is a monomorphism, and f is an isomorphism.
An exact category C ′ is an additive subcategory C ′ ⊂ C of an abelian cate-

gory C such that C ′ is close under extensions in the sense that if there is an
exact sequence

0 !! X !! Y !! Z !! 0

where X, Y are in C ′ then Y is also in C ′. Given an exact category C ′, let E be
the collection of exact sequences in C ′ that are also exact in C. Given an exact
sequence

0 !! A !! B !! C !! 0

in E, we say that the map A → B is an admissible monomorphism and we say
B → C is an admissible epimorphism.

Remark 4.2.2. Note that an exact category is not necessarily closed under all
kernels and cokernels.

Remark 4.2.3. An exact category C ′ with class of exact sequences has the
following properties:

1. E contains all split exact sequences

0 !! A !! A ⊕ C !! C !! 0

2. The admissible epimorphisms and admissible monomorphisms in C ′ are
closed under composition.

3. Given an admissible epimorphism B !! !! C and any morphism C′ →
C then the pullback of B′ → C′ is an admissible epi-morphism.

Examples 4.2.4. Let R be a ring, let X be a space, and let Y be a scheme.

1. The category P(R) of finitely generated projective R modules is an exact
category regarded as a subcategory of the abelian category of all left
R-modules ModR. The exact sequences are all split exact.

2. The category M(R) of finitely generated R-modules is an exact category
regarded as a subcategory of the abelian category of all left R-modules
ModR.
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3. The category VB(X) of vector bundles over a topological space X is an
exact category. It is a subcategory of the category of families of vector
spaces parametrized by X.

4. The category VB(Y) is the category of algebraic vector bundles over Y is
an exact category, regarded as a subcategory of the abelian category of
OX-modules, denoted OX-Mod.

As a warm up, we will define K0 of an exact category.

Definition 4.2.5. Given a small exact category C ′ with class of exact sequences
E, define

K0(C ′) = F(isoC ′)/([A] + [C] = [B] : 0 → A → B → C → 0 ∈ E)

where F(isoC ′) is the free abelian group on the set of isomorphism classes of
of objects in C ′.

Example 4.2.6. When C ′ is an exact category with class of exact sequences E
such that every exact sequence in E splits, then

K0(C ′) ∼= K⊕
0 (C ′).

We now define the algebraic K-theory of an exact category (in the sense of
Quillen).

Definition 4.2.7. Given an exact category C, we define a category QC whose
objects are the same as the objects in C and whose morphisms from A to B are
isomorphism classes of spans

A W
j
#### !! i !! B

where j is an admissible epimorphism and i is an admissible monomorphism.
Here we say that two spans are in the same isomorphism class if there is a
commuting diagram

A

idA
""

W
j
####

∼=
""

!! i !! B

idB
""

A W ′
j
#### !! i !! B

where the outer vertical maps are the identity and the middle vertical mor-
phism is an isomorphism. We then define the composition of two (isomor-
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phism classes) of spans from A to B and from B to C by the digram

W3

....⑤⑤
⑤⑤
⑤⑤
⑤⑤

//

//❇
❇❇

❇❇
❇❇

❇

W1

0000⑥⑥
⑥⑥
⑥⑥
⑥⑥

//

//❈
❈❈

❈❈
❈❈

❈
W2

....④④
④④
④④
④④

,,

,,❆
❆❆

❆❆
❆❆

❆

A B C

where W3 is the pullback W1 ×B W2. By a slight abuse of terminology we
refer to the morphism A !! !! B in QC where W = A as as an admissible
monomorphism and we refer to the morphism A B#### where W = B as
an admissible epimorphism.

Remark 4.2.8. Suppose A W1#### !! !! B is an isomorphism in QQ with

inverse B W2#### !! !! A then the composite

W3

....⑤⑤
⑤⑤
⑤⑤
⑤⑤

//

//❇
❇❇

❇❇
❇❇

❇

W1

0000⑥⑥
⑥⑥
⑥⑥
⑥⑥

//

//❈
❈❈

❈❈
❈❈

❈
W2

....④④
④④
④④
④④

,,

,,❆
❆❆

❆❆
❆❆

❆

A B A

is isomorphic to the map idA : A A#### !! !! A and this implies that all
the maps in the composite are isomorphisms. Therefore the map A → B is an
isomorphism in mathcalC and there is a one to one correspondence between
isomorphisms in C and isomorphisms in QC.

Proposition 4.2.9. The CW complex BQC is connected and there is a bijection

π1(BQC) ∼= K0(C)

where [A] in K0(C) corresponds to the based loop composed of the two edges from 0
to A

0 !! !! A !! !! 0

(regarded as maps in QC and consequently paths in BQC).

Proof. By qxqx, it suffices to show that there is an equivalence of categories
between the category of morphism inverting functors F : QC → Set and the
category of K0(C)-sets where K0(C) is defined as in qxqx. The correspondence
sends F to F(0) so it suffices to show that K0(C) acts naturally on F(0) and
that this gives an equivalence of categories. We write iM : 0 !! !! M for the
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unique admissible monomorphism in QC from 0 to M and jM : M !! !! 0 for
the unique admissible epimorphism in QC from M to 0. Write F for the full
subcategory of the category of morphism inverting functors QC → Set such
that F(M) = F(0) and F(iM) = idM for all M in QC. Given any morphism
functor F′ there exists a functor F in F with F(0) = F′(0) and we observe
form the commutative diagram

F′(M) !!

""

F′(0)

id
""

F(M)
id !! F(0)

which implies that F(M) ∼= F′(M) and consequently there is an equivalence
of categories between the category of morphism inverting functors QC → Set
and the full subcategory F . We therefore want to to describe an equivalence
of categories between F and the category of K0(C)-sets. Given a K0(C)-set S,
define FS : QC → Set by FS(M) = S, FS sends admissible monomorphisms
in QC to idS and admissible epimorphisms to j : M !! !! M′ in QC to the
action of the class [ker j] ∈ K0(C) on S. It’s clear that this takes values in F .
Now given an F in F and and admissible monomorphism i : M !! !! M′ in
QC then its clear that i ◦ i′M = iM so F(i) = idM. Given a sequence

M′ !! i !! M
j
!! !! M′′

where i is an admissible monomorphisms in QC and j is an admissible epi-
morphism in M such that as a sequence in C it is an admissible exact sequence,
then we have j ◦ iM′′ = i ◦ jM′ so F(j) = F(jM′) ∈ Aut(F(0)) and

F(jM) = F(j ◦ jM′′) = F(jM′) ◦ F(jM′′)

so by the universal property of K0(C) there is a group homomorphism K0(C) →
Aut(F(0)) sending M to F(jM). Thus, there is a natural action of K0(C) on F(0)
for any F in F . It is not hard to check that these two functors actually give an
equivalence of categories, so we leave the rest to the reader.

This motivates the following definition.

Definition 4.2.10. Let C be a small exact category. Then we define the Quillen
algebraic K-theory space of C as

K(C) := ΩBQC.

Definition 4.2.11. Recall that for X a scheme then an OX -module F is called
quasi-coherent if X can be covered by affine opens Ui = spec(Ai) such that
for each i there is an Ai-module M with F|Ui =

!M and we say F is coherent
if this module is finitely generated.
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.

Examples 4.2.12. We can now define algebraic K-theory of some familiar ob-
jects. When R is a ring, we define

K(R) := K(P(R))

more generally we can consider the category of finitely generated R-modules
denoted M(R), and we define the G-theory of R to be

G(R) := K(M(R)).

When X is a scheme we define

K(X) := K(VB(X))

where VB(X) is the category of locally free OX modules of finite rank at
each stalk. When X is a Noetherian ring, we define M(X) as the category of
coherent OX-modules and we define

G(X) := K(M(X)).

4.3 Reduction by resolution

We first give the setup for the resolution theorem. Let M be an exact category
and let P ⊂ M be an additive subcategory that is closed under extensions;
i.e. the zero object 0 ∈ M is in P and for any exact sequence

0 !! M′ !! !! M !! !! M′′ !! 0

in M, if M′ and M′′ are isomorphic to objects in P, then M is also isomorphic
to an object in P . By postcomposing with the embedding M ⊂ A into an
abelian category, we produce an exact category structure on P as well and the
inclusion of P into M is an exact functor. If in addition P is closed under
kernels of admissible epimorphisms in M, we will say that (P ,M) is a pre-
resolving pair.

Examples 4.3.1. The main example you should have in mind is the following.
Let R be a right Noetherian ring and consider the inclusion P(R) ⊂ M(R)
then this pair satisfies all of the hypotheses above. This also motivates the
notation.

Remark 4.3.2. The category QP is a subcategory of QM, but it is not gener-
ally a full subcategory. If we have an exact sequence

0 !! P′ !! !! P !! !! M′′ !! 0
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in M need not be exact in P . So the map

P

22
22
22
22

22
22
22
22
11

11❄
❄❄

❄❄
❄❄

P P′

in QM from P to P′ need not be a map in QP .

Theorem 4.3.3 (Resolution). Let (P ,M) be a pre-resolving pair. Suppose that for
each M ∈ M there exists a finite resolution

0 → Pn → · · · → P0 → M → 0

(admissibly exact sequence in M) where Pi ∈ P for 0 ≤ i ≤ n. Then there is a
homotopy equivalence

K(P) ≃ K(M).

To prove this theorem, we will first prove a special case.

Proposition 4.3.4. Let (P ,M) be a pre-resolving pair and suppose that for each
M ∈ M there exists an exact sequence

0 !! P1 !! !! P0 !! !! M !! 0

where P0 is isomorphic to an object in P (and consequently P1 is isomorphic to an
object in P , then the inclusion functor

QP → QM

induces a homotopy equivalence.

The idea of the proof of Theorem 4.3.3 is to filter the category M by full
exact subcategories Mi such that each object M in Mi has a resolution by of
length less than or equal to i by objects in P . This is a filtration of M with
M0 = P . So it suffices to show that in each of the stages of the filtration

P = M0 ⊂ M∈ ⊂ · · · ⊂ M

the pairs (Mi,Mi+1) satisfy the hypotheses of Proposition 4.3.4. This is han-
dled by the following lemma.

Lemma 4.3.5. For any exact sequence

0 !! M′ !! !! M !! !! M′′ !! 0

in M and integer n ≥ 0 the following hold:

(i)n M ∈ Mn and M′′ ∈ Mn+1 implies M′ ∈ Mn,



58CHAPTER 4. THE Q-CONSTRUCTION AND FUNDAMENTAL THEOREMS

(ii)n M′, M′′ ∈ Pn+1 implies M ∈ Pn+1, and

(iii)n M, M′′ ∈ Mn+1 implies M′ ∈ Mn+1.

We consider the case Mn ⊂ Mn+1. Then we know that there is an admis-
sible epimorphism P !! !! M for M ∈ Mn+1. Then P is also in Mn so Item
1. implies the kernel of this map is also in Mn and therefore we can resolve
any object M in Mn+1 by a resolution of length 1 in Mn. Item 2 and Item 3
imply that (Mn,Mn+1) are a pre-resolving pair.

Proof of Theorem 4.3.3. As noted above, there is a filtration

P ⊂ M1 ⊂ · · · ⊂ M

of M by full exact subcategories where each pair (Mi,Mi+1) is a pre-resolving
pair by Lemma 4.3.5. In addition, Lemma 4.3.5 implies that the hypotheses of
Proposition 4.3.4 are satisfied, so there are homotopy equivalences

BQMi ≃ BQMi+1

we then pass to the colimit to produce a homotopy equivalence

BQP ≃ colim
i

BQMi ≃ BQM

and consequently a homotopy equivalence

K(P) ≃ K(M).

Definition 4.3.6. We will say a ring is regular if every finitely generated R-
module M has a finite resolution by finitely generated projective R-modules.
We say that a separated Noetherian scheme is regular if every coherent OX-
module has a finite resolution by algebraic vector bundles over X.

Corollary 4.3.7. When R is a regular ring, then

K(R) ≃ G(R).

Corollary 4.3.8. When X is a separated regular Noetherian scheme, then

K(X) ≃ G(X).

We now prove the remaining results that we used to prove the resolution
theorem.
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Proof of Proposition 4.3.4. As noted before, QP ⊂ QM is not a full subcate-
gory. Let Q denote the full subcategory of QM on the objects in QP . We will
show that the maps BQP → BQ and BQ → BQM induced by the canonical
inclusions are homotopy equivalences.

Write i : QP → Q for the canonical injection. We will apply Quillen’s
theorem A by showing that Bi/P is contractible for each object P ∈ Q. Objects
in i/P are given by pairs (P2, u) where u is a span of the form

P1

2222⑦⑦
⑦⑦
⑦⑦
⑦ 11

11❄
❄❄

❄❄
❄❄

❄

P2 P

and P/P1 ∈ M. We define a functor z : i/B → i/B by

z(P2, u) = (P1, P1 P1 !! !! P )

and note that P1 P1 !! !! P and 0 0 !! !! P are morphisms in

QP . Write (0, 0 → P) as shorthand the pair (0, 0 0 !! !! P ). We there-
fore have natural transformations of functors

idi/B 33 z(−) const(0,0→P)
44

given on an objects by

(P1, P1 P1 !! !! P ) → (P2, u) and

(0, 0 0 !! !! P ) → (P2, u)

respectively. Consequently, there is a homotopy equivalence from idBi/P to a
constant map and therefore Bi/P is contractible.

It therefore suffices to show that the canonical inclusion j : Q → QM
induces a homotopy equivalence on classifying spaces. We will apply the
dual version of Quillen’s Theorem A. The category M\j has objects

(P, u : M P1#### !! !! P)

with P in P . Since we can assume that some admissible epimorphism P1 !! !! M
exists, this category is always nonempty. Let C be the full subcategory of M\j
on pairs of the form (P, M P#### P ). The inclusion functor has a
right adjoint given by a functor r satisfying

r(P, u) = (P1, M P1#### P1 ).

Therefore, BC ≃ BM\j. We now apply a similar argument as above to show
that BC is contractible. Fixing an object

(P0, u0 : M P0#### P0 ),



60CHAPTER 4. THE Q-CONSTRUCTION AND FUNDAMENTAL THEOREMS

we define a functor p : C → C by

p(P, u) = (P ×M P0, M P ×M P0#### P ×M P0 )

which is well defined because P is closed under sub-objects and extensions.
We can define natural transformations

idC p44 33 cons(P0,u0)

on objects by the maps

(P ×M P0, M P ×M P0#### P ×M P0 ) → (P, u)

and
(P ×M P0, M P ×M P0#### P ×M P0 ) → (P0, u0)

respectively. Again, this proves that BC and consequently BM\j is contractible.

Proof of Lemma 4.3.5. This is left as an exercise for now.

4.4 Dévissage

The Dévissage theorem has a similar flavor to the resolution theorem, but
instead of considering resolutions we consider filtrations. This result assumes
that we are considering abelian categories though and not just exact categories.

Definition 4.4.1. Let A and B be abelian categories and let i : A ⊂ B be an
inclusion of a full subcategory. We say that A is an exact abelian subcategory if
the inclusion functor is an Ab-enriched functor and it sends exact sequences
in A to exact sequences in B. In addition, we say that the pair (A,B) is
pre-unscrewable if A is closed under sub-objects and quotients.

Theorem 4.4.2 (Dévissage). Let (A,B) be a pre-unscrewable pair of abelian sub-
categories. In addition, suppose that every B in B has a finite filtration

0 = Bn ⊂ · · · ⊂ B1 ⊂ B0 = B

by objects in B such that every subquotient Bi/Bi+1 lies in A. Then there is a
homotopy equivalence

K(A) ≃ K(B).

Before we prove the theorem, we note one of the main applications.

Examples 4.4.3. If I is a nilpotent ideal in a Noetherian ring R, then G(R/I) ≃
G(R).
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Examples 4.4.4. Let T be the abelian category of finitely generated torsion
modules over a Dedekind domain R. Let Tss be the abelian subcategory of
semi-simple objects in A. Then the pair (Tss, T ) is pre-unscrewable and every
object in T has a finite filtration with filtration quotients in Tss so

K(Tss) ≃ K(T ).

Moreover, there is an equivalence of categories

Tss ≃ ∏
p

M(R/p)

by Shur’s Lemma and algebraic K-theory commutes with finite products so

K(T ) ≃ ∏
p

K(R/p).

For the proof of Dévissage, it will be useful to have another description of
objects in the Q-construction.

Construction 4.4.5. Let B be a small exact category. An admissible subobject
of B, is an equivalence class of admissible monomorphisms B2B---- where two
admissible monomorphisms are equivalent if they each factor through each
other. By construction every morphisms A B2#### !! !! B determines a

unique admissible subobject B2 of B and an admissible epimorphism B2 !! !! A .

Proof of Theorem 4.4.2. We again apply Quillen’s Theorem A. Writing i : A ↩→
B for the inclusion functor, we need to show that BQi/B is contractible for
every B in B. If B is in A then clearly B is a terminal object in Qi/B and there-
fore BQi/B is contractible. Since, more generally, there is a finite filtration of
B with filtration quotients in A, it suffices to show that

BQi/B′ → BQi/B

is a homotopy equivalence for each B′ !! !! B in B with B/B′ in A. An
object in Qi/B is a pair (A, u : A B2#### !! !! B ) and we write B1 =

ker( B2 !! !! A ) so B2/B1 is in A. We consider the subcategory J of Qi/B
of those pairs (A, u) with B1 an admissible subobject of B′. Then we have a
functor

s : Qi/B′ → J

defined by letting A′ = coker( B1 ∩ B′ !! !! B2 ) and setting

s(A, u) = (A′, u′ : A′ B2#### !! !! B )

and we have a functor
r : J → Qi/B′
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defined by letting A′′ = coker( B1 !! !! B2 ∩ B′ ) and defining

r(A, u) = (A′′, u′′ : A′′ B1 ∩ B′#### !! !! B )

using the fact that A is closed under subobjects. There are natural transfor-
mations

id 33 s(−) r ◦ s(−)44

defined by

(A, u) !! (A′, u′) (A′′, u′′)##

so s is left adjoint to the inclusion J ⊂ Qi/B and r is right adjoint to the
inclusion Qi/B′ ⊂ J. Therefore BQi/B ≃ BQi/B′ as desired.

4.5 Localization

The main example we should have in mind is the following. Let S be a central
multiplicatively closed set in a Noetherian ring R. Let MS(R) be the subcate-
gory of finitely generated S-torsion modules and let M(R) be the category of
finitely generated R-modules. Write S−1R for the localization of R at S. Then
we will show that there is a fiber sequenece

KQ(MS(R)) → G(R) → G(S−1R).

To do this, we need to describe some extra properties that we have in this
situation. First, of all MS(R) ⊂ M(R) is a Serre subcategory.

Definition 4.5.1. A Serre subcategory B of a (small) abelian category A is an
abelian subcategory that is closed under subobjects, quotients, and extensions.

Note that subobjects, quotients and extensions of finitely generated S-
torsion R-modules are all still clearly finitely generated S-torsion R-modules.
Moreover, we can describe M(S−1R) by a certain quotient construction

M(R)/MS(R)

defined using the theory of calculus of fractions due to Gabriel.

Construction 4.5.2 (Quotient category). Let B ⊂ A be a Serre subcategory of
a (small) abelian category A. We say a morphism f in A is a B-isomorphism
if ker( f ) and ( f ) are in B. We define a category A/B to be the category with
the same objects as A and a morphism is an equivalence class of spans

A1 A′f
##

g
!! A2
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where f is a B-isomorphism and two morphisms are in the same equivalence
class if there is a commutative diagram

A′

..⑤⑤
⑤⑤
⑤⑤
⑤⑤

//❇
❇❇

❇❇
❇❇

❇

A1 A## !!

""

--

A2

A′′

55❇❇❇❇❇❇❇

66⑤⑤⑤⑤⑤⑤⑤

where both maps A′ A## !! A′′ are B-isomorphisms. Composition of
two spans

A1 A′f
##

g
!! A2

and

A2 A′′f ′
## h !! A3

is defined by the pullback

A

..⑤⑤
⑤⑤
⑤⑤
⑤⑤

//❈
❈❈

❈❈
❈❈

❈

A′

00⑥⑥
⑥⑥
⑥⑥
⑥⑥

,,❆
❆❆

❆❆
❆❆

❆ A′′

..⑤⑤
⑤⑤
⑤⑤
⑤⑤

//❈
❈❈

❈❈
❈❈

❈

A1 A2 A3.

There is an evident functor

loc : A → A/B

which is the identity on objects and sends a morphism g : A → B in A to the
morphism A A !! B in A/B.

Proposition 4.5.3. The construction A/B is an abelian category and the functor

loc : A → A/B

is an exact functor.

Proof. See p.44ff Swan Algebraic K-theory. Add citation.

Remark 4.5.4. Note that the functor

loc : A → A/B



64CHAPTER 4. THE Q-CONSTRUCTION AND FUNDAMENTAL THEOREMS

sends objects in B to objects that are isomorphic to the zero object in A, since
we can always take the map B → 0 in A and produce a map B B !! 0
in A with inverse 0 B## !! B in this category. Similarly, a map in A/B
is an isomorphism if and only if it is a B-isomorphism.

This construction also has a universal property: if T : C is an exact functor
and T(B) ∼= 0 for all B in B, then there is a unique exact functor T′ : A/B → C
such that the diagram

A loc !!

T
&&❉

❉❉
❉❉

❉❉
❉❉

A/B

T′

""
✤
✤
✤

C
commutes.

Now we are prepared to state the localization theorem.

Theorem 4.5.5 (Localization). Let B be a Serre subcategory of a small abelian cate-
gory A. Then there is a homotopy fiber sequence

K(B) → K(A) → K(A/B)

inducing a long exact sequence

· · · → Kn+1(A/B) → Kn(B) → Kn(A) → Kn(A/B) → . . .

Proof. Given an object A ∈ A, write A when we regard this object as an object
in A/B. We will apply Quillen’s theorem B, so we need to show that

1. B(0\Qloc) is homotopy equivalent to BQB, and

2. for each map L → L′ the induced map B(L′\Qloc) → B(L\Qloc) is a
homotopy equivalence.

Note that objects in L\Qloc are pairs (A, u : L → A) where A ∈ A and L → A
is a map in QA/B. We will first do a reduction. Let FL ⊂ L\Qloc be the full
subcategory consisting of pairs (A, u : L → A), where A ∈ A and L → A
is an isomorphism in A/B. Since the objects that are isomorphic to the zero
object in A/B are exactly the objects in B and the morphisms between them
are exactly the morphisms in QB, we observe that there is an equivalence
of categories between QB and F0. We therefore want to prove the following
claims.

1. The inclusion iL : FL → L\Qloc induces a homotopy equivalence for all
L. Consequently, there is a homotopy equivalence BQB ≃ B(0\Qloc).

2. each EN has a full subcategory E ′
N such that

3. The categories FL are a filtered colimit of categories EN each depending
on an object N ∈ A.
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(a) the inclusion induces a homotopy equivalence BE ′
N ≃ BEN , and

(b) there is a homotopy equivalence BE ′
N ≃ BQB.

Once we have proven these claims, we know that BFL ≃ colimIL BEN for
some filtered category IL for all L in A/B and BEN ≃ BQB for all N
and the maps g∗EN → EN′ induce homotopy equivalences on homotopy
groups, so BFL ≃ BQB for all L. This finishes the proof.

We now prove the claims. We prove the first claim using Quillen’s Theo-
rem A. We need to show that i/(A, u) is contractible for each pair (A, u)
where A ∈ A and u : L → A is a map in QA/B. We can identify this
category with a filtered partially ordered set of composable monomor-
phisms

A1 !! !! A2 !! !! A

where A2/A1
∼= L. To see that this category is partially ordered we say

that
A1 !! !! A2 !! !! A

is less than or equal to

A3 !! !! A4 !! !! A

with A2/A1
∼= L and A4/A3 ∼= L if there are monomorphisms

A3 !! !! A1 !! !! A2 !! !! A4 .

To see that this partially ordered set is also filtered, note that A1 ∩ A3
and A2 + A4 are nonempty

A3 ∩ A1 !! !! A2 + A4 !! !! A

is clearly less than or equal to both

A1 !! !! A2 !! !! A

and
A3 !! !! A4 !! !! A .

(Note that the other property of a filtered category is always satisfied for
partially ordered sets.) Since the classifying space of a filtered partially
ordered set is contractible, we have proven the claim.

We now need to introduce the categories EN . Fix N ∈ A. Then EN is the
category of pairs (A, h : A → N) where Qloc(h) is an isomorphism in
A/B. A morphism between such pairs (A, h) and (A′, h′) is a morphism

A A′′#### !! !! A′



66CHAPTER 4. THE Q-CONSTRUCTION AND FUNDAMENTAL THEOREMS

in QA such that the two composites A′′ → N agree. We also define
a functor k : EN → QB by sending h to ker(h). We then define a full
subcategory of EN denoted E ′

N on objects (A, h) such that h is an epi-
morphism and let k′ : E ′

N → QB denote the composite of the inclusion
with the functor k.

We further define a category IL as follows. The objects in IL are pairs

(N, α : N
∼=→ L) where N is an object in A and N

∼=→ L is an isomorphism
in A/B. The morphisms (N, α) → (N′, β) are B-isomorphisms g : N →
N′ in A such that the composite N

g→ N′ β→ L is equal α. This is a filtered
category. We just prove one of the properties of filtering and leave the
other to the reader. Suppose we have two maps g1, g2 : (N, α) → (N′, β).
Then loc(g1 − g2) = 0 so im(g1 − g2) ∈ B. So there is a map (N′, β) →
(N′, γ) that equalizes these two morphisms by letting N′′ = N/ im(g1 −
g2).

There is a functor from IL to the category of small categories sending
(N, N → L) to EN and g to a functor g∗ : EN → EN′ defined by sending
an object (A, h) to (A, g ◦ h) and defined on morphisms in the evident
way. For each N, there is also a functor

P(N,α) : EN → FL

sending (M, h : M → N) to (M, loc(h)−1α−1 : L
∼=→ N

∼=→ M) and since
for any map g : (N, α) → (N′, β) in IL there is compatibility

P(N′ ,β) ◦ g∗ = P(N,α)

there is a map

colim
IL

EN → FV . (4.5.6)

We claim that this is actually an isomorphism of categories. To see this,
note that

(M, θ : L
∼=→ M) = P(M,θ−1)(M, idM)

for any (M, θ) in FL. This the map (4.5.6) is surjective on objects. Also,
given P(N,α)(M, h) = P(N,α)(M′, h′), then M = M′ and loc(h) = loc(h′).
Let N′ = N/ im(h − h′) we produce a map g : (N, α) → (N, β) such that
g∗(M, h) = g∗(M, h′). Therefore, the map (4.5.6) is also injective on ob-
jects. One can verify that the map is bijective on morphisms in the same
way. It therefore suffices to prove that the inclusion i induces a homo-
topy equivalence BE ′

N ≃ BEN and that there is a homotopy equivalence
BQB ≃ BE ′

N for all N.

We first show that the functor kN : E ′
N ≃ QB that we discussed earlier

induces a homotopy equivalence on classifying spaces. We prove this by
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applying Quillen’s Theorem A. It therefore suffices to show that kN/B
is contractible for each B in B. We observe that the category kN/B is
a fibered category over E ′

N whose objects are pairs ((M, h), u) where
(M, h) is an object in E ′

N and u : ker(h) → B is a map in QB. Let
C be the full subcategory of kN/B consisting of those pairs ((M, h), u)
where u is a surjection in QB. Note that any map in QB can be factored
as u = j! ◦ i!. Given X = ((M, h), u) we can therefore write u = j! ◦ i!
where i : ker(h) !! !! T0 and j : T !! !! T0 and define (i∗M, h) by the
pushout

ker(h) !! !!
""

i
""

M !! !! N

T0 !! !! i∗M !! !! N.

Let X = ((i∗M, h), j!). Then X is in C and there is an evident map X → X
This has the universal property that for any map X → Y in kn/B with Y
in C then this map factors through X → X. Consequently, there exists a
left adjoint to the inclusion C ↩→ kn/B. It therefore suffices to prove that
BC is contractible. However, C has an initial object, namely ((N, idN), j!B)
where jB is the map B !! !! 0 .

We now show that iN : E ′
N → EN induces a homotopy equivalence on

classifying spaces. Let I be the ordered set of sub-objects I of N such
that N/I ∈ B, regarded as a category. There is a functor EN → I sending
(M, h) to im(h). It is not hard to show that EN → I is a fibered category
and the fiber over I in I is E ′

I . The base change functor E ′
I → E ′

J is given

by the functor J ×I − sending (M, M !! !! I ) to (J ×I M, J ×I MJ---- .
The functor J ×I − clearly commutes with iI and iJ . It follow from the
previous paragraph, that the functor J ×I − induces a homotopy equiv-
alence on classifying spaces for every map I → J in I . Consequently, E ′

N
is homotopy equivalent to the fiber of the map BEN → BI . Since I is fil-
tered partially ordered set, we know BI is contractible, so the inclusion
E ′

N → EN induces a homotopy equivalence on classifying spaces.

Corollary 4.5.7. Let R be a Noetherian ring and let S be a central multiplicatively
closed subset. Then there is a homotopy fiber sequence

KQ(MS(R)) → G(R) → G(S−1R)

Corollary 4.5.8. Let R be a Dedekind domain with field of fractions F, then there is
a fiber sequence

∏
p⊂R

K(R/p) → K(R) → K(F)
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Proof. We apply Corollary 4.5.7 in the case of S = R− {0} to produce the fiber
sequence

KQ(MS(R)) → G(R) → G(F).

We then apply Theorem 5.6.2 to identify G(R) ≃ K(R) and G(F) ≃ K(F). We
also apply Theorem 5.6.2 to show that

KQ(MS(R)) ≃ ∏
p⊂R

K(R/p)

as in Example 5.6.2.

We now briefly discuss transfer maps. Suppose, for simplicity, that R is a
Noetherian ring and we have a ring map f : R → S so that S has a resolution
by finitely generated projective R-modules when regarded as an R-module.
Then restricting scalars defines an exact functor P(S) → M(R) and we define
the transfer to be the induced map on algebraic K-theory

f∗ : K(S) = KQ(P(R)) → KQ(M(R)) ≃ K(R).

Examples 4.5.9. Let i : R → R[s] be the inclusion and let R be Noetherian. Let
f : R[s] → R be the map f (s) = 0. Since i is a flat map, i∗(−) = −⊗R R[s]
sends finitely generated R-modules to finitely generated R[s]-modules and
defines a functor i∗ : K(R) → K(R[s]). Since TorR[s]

k (R,−) = 0 for k ≥ 2
we say that R[s] has finite flat dimension. Restricting to the full subcategory
F ⊂ M(R) of modules M such that TorR[s]

n (R, M) = 0 for n ∕= 0, we can apply
the resolution theorem to show that G(R) ≃ KQ(F ) and there is a functor
KQ(F ) → G(S) defined by extension of scalars. This defines a base change
map

f ∗ : G∗(R) → G∗(R[s]).

The composite f ◦ i = id so the composite

f ∗i∗ : G(R) → G(R[s]) → G(R)

is homotopic to the identity.
However, the transfer map f∗ : G(R) → G(R[s]) is in fact the zero map.

This follows by applying the Additivity theorem to the sequence of functors

i∗ !! !! i∗ !! !! f∗ : M(R) → M(R[s])

sending M to

0 → M ⊗R R[s] id⊗s→ M ⊗R R[s] → M ⊗R R → 0

Finally, we prove that algebraic G-theory is A1-invariant for Noetherian
rings, and consequently algebraic K-theory is A1-invariant for regular Noethe-
rian rings.
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Corollary 4.5.10. For any Noetherian ring R, there is an equivalence

G(R) ≃ G(R[s])

and there is an isomorphism

Gk(R[s, s−1]) ∼= Gk(R)⊕ Gk−1(R)

for all k ≥ 1.

Proof. Again, a sin of omission for now. Add proof here.

4.6 The + = Q theorem.

This is also a sin of omision at the moment. Add later.
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Chapter 5

The S•-construction and
fundamental theorems

In this section, we discuss results of Waldhausen [22]. We take one departure
from the classical approach of Waldhausen and describe a universal property
of algebraic K-theory following [20].

5.1 The S•-construction

For simplicity, we begin by defining the S•-construction for an exact category
C. We will then remark that the same construction holds for a more general
input: a category with cofibrations and weak equivalences in the sends of Wald-
hausen.

Recall that there is a fully faithful embedding ∆ ⊂ Cat of the simplex
category in the category of small categories. Recall that this also defines a
cosimplicial small category with coface maps δi and codegeneracies σi. We
abuse notation and write [n] for the image of [n] in Cat. We write Cat(C,D)
for the category of functors from C to D. For example, the arrow category
may be defined as

Arr(C) := Cat([1], C).
Construction 5.1.1. Let C be an exact category and consider the full subcate-
gory

Sn(C) ⊂ Cat(Arr([n]), C)
of those functors A : Arr([n]) → C such that

1. for every functor µ : [0] → [n], we have A(µ ◦ σ0) = 0

2. for every functor γ : [2] → [m], the sequence

0 !! A(γ ◦ δ2) !! A(γ ◦ δ1) !! A(γ ◦ δ0) !! 0

71
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is exact in C.
This forms a simplicial object in small categories by functoriality of the
composite

Cat(Cat([1],−), C) : ∆op → C.

We write
di : SnC → Sn−1C

for the face maps and
si : SnC → Sn+1C

for the degeneracy maps.
A sequence

0 → A′ → A → A′′ → 0

is an exact sequence if for every functor θ : [1] → [n] the induced sequence

0 → A′(θ) → A(θ) → A′′(θ) → 0

is an object-wise exact sequence in C. A morphism A → A′ is an isomor-
phism if for every functor θ : [1] → [n] the map

A(θ) → A′(θ)

is an object-wise isomorphism. With this class of exact sequences and
these isomorphisms, the category SnC is in fact an exact category. Writing
Exact for the category of small exact categories, we observe that

S•C : ∆op → Exact

is a simplicial object in the category of small exact categories. We then
write

wS•C
for the groupoid with the same objects, but only isomorphisms.

Definition 5.1.2. Given an exact category C, we define

Kwald(C) := Ω|N•(wS•C)|
Here we note that N•(wS•C) is in fact a bisimplicial set so by the geometric
realization we mean any of the three constructions of geometric realization
that produce the same space up to homeomorphism.

Moreover, since S•C takes values in the category of small exact categories,
we may iterate the construction.

Definition 5.1.3. Given an exact category C, we define

S(n)
• := S•(. . . (S•C))

where we have iterated S• n times. We define a sequence of spaces

Kwald(C)n := Ω|N•(wS(n+1)
• C)|

for all n ≥ 0.
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5.2 The Additivity Theorem

Recall that an Ω-spectrum is a sequence of spaces Xi for i ≥ 0 with structure
maps

X0 → ΩX1 → Ω2X2 → . . .

such that all horizontal maps are homeomorphisms. The main result we want
to prove is the following.

Theorem 5.2.1. The sequence of spaces

Kwald(C)0 → ΩKwald(C)1 → Ω2Kwald(C)2 → . . .

forms an Ω-spectrum.

In fact, one of the most fundamental properties of algebraic K-theory fol-
lows from this.

Definition 5.2.2. Given exact categories A, C, B and functors f : A → C and
g : B → C, define E(A, C,B) to be the pullback

E(A, C,B) !!

""

co f (C)+

""
A× B !! C × C.

where co f (C) ⊂ Arr(C) is the full subcategory of the admissible monomor-
phisms in C and co f (C)+ is the category equivalent to co f (C) whose objects
are admissible monomorphisms A → B with a choice of quotient B/A. When
A = B = C, we simply write E(C) for this construction. Note that E(A, C,B)
is evidently an exact category. An object in E(A, C,B) may be regarded as an
exact sequence in C of the form

0 → f (A) → C → g(B) → 0

where A is an object in A and B is an object in B.

Theorem 5.2.3 (Additivity). There is an isomoprhism

((d0)∗, (d2)∗) : Kwald(E(C)) ∼= K(C)× K(C)

where (d0)∗ is induced by the exact functor

d0 : E(C) → C

sending a sequence A → B → B/A to A and (d2)∗ is induced by the exact functor

d2 : E(C) → C

sending an exact sequence A → B → B/A to B/A.
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Theorem 5.2.4 (Additivity version 2). Given an sequence of functors

F′ → F → F′′ : C ′ → C

such that for all objects c in C ′ the sequence

0 → F′(c) → F(c) → F′′(c) → 0

is exact in C, then there is a weak equivalence

F∗ ≃ F′
∗ ∨ F′′

∗ : K(C ′) → K(C).

All of these constructions and results hold in a more general setting.

Definition 5.2.5. A category with cofibrations consists of a pointed category C
with zero object 0 and a subcategory cof(C) such that all isomorphisms are in
C, the unique map 0 → c is in cof(C) for all object c in C, and pushouts

A !! !!

""

B

""
C !! C ∐A B

in C along a cofibration A → B exist in C and the canonical arrow C → C ∐A B
is again in cof(C).

In particular, we write C/B = 0 ∐B C for the pushout

B !! !!

""

C

""
0 !! 0 ∐B C

along a cofibration B → C.

Definition 5.2.6. A Waldhausen category is a category with cofibrations (C, cof(C)
with a subcategory wC of C containing all isomorphisms and satisfying the
gluing lemma: if the commutative diagram

B

≃
""

A#### !!

≃
""

C

≃
""

B′ A′#### !! C′

where A → B and A′ → B′ are maps in cof(C) and the vertical maps are maps
in wC, then the induced map

B ∐
A

C → B′ ∐
A′

C′

is in wC.
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Example 5.2.7. Consider the full subcategory of topological spaces over and
under a fixed space X

R(X) ⊂ X\Top/X

and let R(X) be the full subcategory of objects X → Y → X where (Y, X) is a
relative CW complex with finitely many cells. The cofibrations are inclusions
of sub CW complexes and the weak equivalences are weak equivalences after
forgetting to Top. We call this the Waldhausen category of retractive spaces.

5.2.1 Equivalent formulations of Additivity

We will first prove that Theorem 5.2.3 and Theorem 5.2.4 are equivalent for-
mulations of the additivity theorem. We will then prove that both of them
follow from Theorem 5.2.1. In fact Theorem 5.2.1 is also equivalent to Theo-
rem 5.2.3 and Theorem 5.2.4, but we defer the proof of that until later. Here
we will write

E(C) := S2C.

Proof that Theorem 5.2.3 implies Theorem 5.2.4. We first give an intermediate state-
ment: there is a weak equivalence

(d0)∗ ∨ (d2)∗ ≃ (d1)∗ : |wS•E(C)| → |wS•C|. (5.2.8)

We first prove that this implies Theorem 5.2.4. To see this, note that an exact
sequence of functors

F′ !! !! F !! !! F′′ : C ′ → C

is equivalent data to a functor

G : C ′ → E(C)

such that d0 ◦ G = F′, d1 ◦ G, and d2 ◦ G = F′′. So if (d0)∗ ∨ (d2)∗ ≃ (d1)∗, then

F′
∗ ∨ F′′

∗ = ((d0)∗ ∨ (d2)∗) ◦ G∗ ≃ (d1)∗ ◦ G∗ = F∗.

It therefore suffices to prove that Theorem 5.2.3 implies that (d0)∗ ∨ (d2)∗ ≃
(d1)∗. We note that after precomposing with the exact functor

∨ : C × C → E(C)

sending (A, B) to A → A ∨ B → B, it is clear that ((d0)∗ ∨ d1)∗) ◦ (∨)∗ ≃
(d1)∗ ◦ (∨)∗. We therefore just need to argue that the map

(∨)∗ : wS•C × wS•C → wS•E(C)

induces a homotopy equivalence on geometric realizations. However, it is
clear that (d0)∗ ∨ (d2)∗ ◦ (∨)∗ = id and we assumed that (d0)∗ ∨ (d2)∗ induces
a homotopy equivalence, so this implies that (∨)∗ does as well.
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Proof that Theorem 5.2.4 implies Theorem 5.2.3. First, we note that Theorem 5.2.3
is a special case of the statement that the functor

(d0, d2) : E(A, C,B) → A× B

sending a cofiber sequence A !! !! C !! !! B , where A is in the essential
image of A and B is in the essential image of B to (A, B), induces a homotopy
equivalence

((d0)∗, (d2)∗) : |wS•E(A, C,B)| ≃ |wS•A|× |wS•B|.

To see this, we first observe that the functor

(∨)∗ : |wS•A|× |wS•B| → |wS•E(A, C,B)|

satisfies ((d0)∗, (d2)∗) ◦ (∨)∗ = id. The result will follow if we can show
that (∨)∗ ◦ ((d0)∗, (d2)∗) ≃ id. To see this, we rewrite (∨)∗ ◦ ((d0)∗, (d2)∗) as
F′
∗ ∨ F′′

∗ where

F′( A !! !! B !! !! C ) = A id !! A id !! 0 , (5.2.9)

F( A !! !! B !! !! C ) = A !! !! B !! !! C , and (5.2.10)

F′′( A !! !! B !! !! C ) = 0 !! C id !! C . (5.2.11)

Then clearly F′ !! !! F !! !! F′′ is a cofiber sequence of exact functors and,
by Theorem 5.2.4, we know that

(∨)∗ ◦ ((d0)∗, (d2)∗) = F′
∗ ∨ F′′

∗ ≃ F = id .

Finally, we prove that Theorem 5.2.1 implies Theorem 5.2.4 and conse-
quently Theorem 5.2.3.

Proof that Theorem 5.2.1 implies Theorem 5.2.4. Recall that Theorem 5.2.4 is equiv-
alent to the statement that the there is a weak equivalence

(d0)∗ ∨ (d2)∗ ≃ (d1)∗ : |wS•E(C)| → |wS•C|.

We claim that this is true after post-composing with the map

j : |wS•C| → Ω|wS(2)
• C|;

that is, j ◦ ((d0)∗ ∨ (d2)∗) ≃ j ◦ (d1)∗. Therefore, if j is a homotopy equiva-
lence, then this implies Theorem 5.2.4 as desired. Since j being a homotopy
equivalence is implied by Theorem 5.2.1, we are done.
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It therefore suffices to prove the claim. Note that we form the 2-skeleton
of |sS•C|, denoted |wS•C|(2) by

(
2

∐
k=0

BwSkC × |∆k|)/ ≃ .

As we noted earlier, the 1-skeleton is S1 ∧ BwS1C ≃ S1 ∧ BwC so we form the
2-skeleton as a homotopy coequalizer of the diagram

BwS2C × |∆2| !!!! BwS1C ∧ S1.

The map j is the composite of the adjoint of the map BwS1C ∧ S1 → |wS•C|(2)
with the inclusion of the two skeleton. Restricting to the three inclusions
|∆0| → |∆1| gives the maps (d0)∗, (d1)∗, and (d2)∗, so the coequalizer gives
a simplicial homotopy from (d0)∗ ∨ (d2)∗ to (d1)∗ after post-composing with
the map j.

5.2.2 Proof of the Additivity theorem

Recall that the minimal choice of weak equivalences is the the class of iso-
morphisms. We will prove that the Theorem 5.2.3 follows from the special
case where the class of weak equivalences is the class of isomorphisms. First,
we reduce the case when the weak equivalences are isomorphisms to an even
simpler case. This requires the following definition and lemma.

Definition 5.2.12. Let C be a category with cofibrations, then we define

snC := obSnC.

Lemma 5.2.13. An exact functor f : C → C ′ between categories with cofibrations
induces a map

s•C → s•C ′

and a natural isomorphism η : f
∼=→ g between two such functors induces a homotopy

between f and g. In particular, an exact equivalence of categories h : C → C ′ induces
a homotopy equivalence

|s•h| : |s•C|
≃→ |s•C ′|.

In particular, when C is a category with cofibrations and weak equivalences then there
is a homotopy equivalence

|s•C| ≃ |isoS•C|

Proof. We leave the proof as an exercise. However, it helps to observe that a
simplicial homotopy from X → Y is the same data as a natural transformation
of functors from

η : X ◦ i → Y ◦ i
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where i : (∆/[1])op → ∆ is the forgetful functor which takes an object [n] →
[1] to [n].

Therefore, the special case of the additivity theorem where the class of
weak equivalences is the class of isomorphisms is equivalent to the following
proposition

Proposition 5.2.14. The exact functor

d0 ∨ d1 : S2C → C × C

induces a homotopy equivalence

|s•S2C|
≃→ |s•C|× |s•C|.

We defer the proof of this proposition until later, but we will now show
that it implies the additivity theorem.

Proof of Theorem 5.2.3 assuming Proposition 5.2.14. We define

C(m, w) ⊂ Cat([m], C)

to be the full sub category of functors Cat([m], C) taking values in wC, re-
garded as a subcategory with cofibrations of Cat([m], C). We observe that
C(•, w) forms a simplicial category with cofibrations. Proposition 5.2.14 im-
plies that

|s•S2(C(•, w))| → |s•(C(•, w)|× |s•(C(•, w))|
is a homotopy equivalence (since it is induced by a level-wise weak equiva-
lence between Reedy cofibrant simplicial spaces). We then observe that there
is a natural isomorphism of bisimplicial sets

N•wS•C ∼= s•(C(•, w))

and therefore this proves Theorem 5.2.3.

It therefore suffices to prove Proposition 5.2.14. First, we note some lem-
mas that will be used to prove the proposition. The first two lemmas follow
from Quillen’s Theorem A and Theorem B.

Lemma 5.2.15 (Lemma A). Let y ∈ Yn, which by the Yoneda lemma corresponds to
a map of simplicial sets

∆n → Y

and let f : X → Y be a map of simplicial sets. Then we let f /(n, y) denote the
pullback

f /(n, y) !!

""

X

""
∆n !! Y.

(5.2.16)

If f /(n, y) is contractible for every (n, y), then X → Y is a homotopy equivalence.
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Lemma 5.2.17 (Lemma B). If for every a : [m] → [n] and every y ∈ Yn the induced
map

f /(m, a∗y) → f /(n, y)

is a homotopy equivalence, then for every (n, y) the pullback 5.2.16 is a homotopy
pullback.

Proof sketch. Let ∆/Y be the category whose objects are pairs ([n], y) and
morphisms ([n], y) → ([n′], y′) are morphisms a : [n] → [n′] in ∆ such that
a∗y = y′. We regard this as a functor

∆/− : sSet → Cat

and apply ∆/− to the pullback diagram 5.2.16. Then one observes that the
category ∆/( f /(n, y)) is naturally isomorphic to (∆/ f )/(n, y). One then uses
that there is a homotopy equivalence N•(∆/Y) ≃ Y.

Lemma 5.2.18. The exact functor d0 induces a map

(d0)∗ : s•S2C → s•C

of simplicial sets satisfying the hypotheses of Lemma 5.2.17.

Proof. For every y ∈ SnC and every map w : [n] → [m] in ∆, we need to show
that the map

w∗ : f /(m, w∗y) → f /(n, y)

induces a homotopy equivalence. Since every map [m] → [n] can be embed-
ded in a commuting triangle

[m]
w !! [n]

[0]

u

77❆❆❆❆❆❆❆❆ v

((⑦⑦⑦⑦⑦⑦⑦

and if u∗ and v∗ induce homotopy equivalences then w∗ does as well.
Let ∗ denote the unique zero simplex of s•C. It suffices to show that the

map
vi : [0] → [n]

sending 0 to i induces an equivalence

(vi)∗ : f /(0, ∗) → f /(n, y′)

for each y′ ∈ snC.



80CHAPTER 5. THE S•-CONSTRUCTION AND FUNDAMENTAL THEOREMS

We can identify an m-simplex of s•S2C with an object of S2(SmC), or in
other words an cofiber seqeunce A′ → A → A′′ of objects in SmC. An m-
simplex of f /(n, y′) then consists of an m-simplex A′ → A → A′′ of s•S2C
and a map u : [m] → [n] such that A′ is equal to

Arr([m])
u∗→ Arr([n])

y′→ C.

the map (d2)∗ sends A′ → A → A′′ to A′′ and it induces a map

p : f /(n, y′) → s•C.

This map is a left inverse to the composite map

s•C
j→ f /(0, ∗) (vi)∗→ f /(n, y′)

for each i, so if we can show p induces a homotopy equivalence, then this
implies (vi)∗ induces a homotopy equivalence since we have already observed
that j induces a homotopy equivalence.

To show p induces a homotopy equivalence, it suffices to show that the
composite (vn)∗ j∗p∗ is homotopic to the identity on f /(n, y′) so that (vn)∗ j∗
is a homotopy inverse to p∗ We will construct an explicit homotopy from
(vn)∗ j∗p∗ to the identity.

We will proceed by lifting the simplicial homotopy that contracts ∆n to its
last vertex. This simplicial homotopy is a natural transformation of functors
from

∆/[1]op → ∆op ∆n
→ Set

to itself by

(v : [m] → [1]) -→ ((u : [m] → [n]) -→ (u : [m] → [n]))

where u is defined as the composite

u : [m]
(u,v)→ [n]× [1] w→ [n]

and where w(j, 0) = j and w(j, 1) = n.
A lifting of this homotopy to one on f /(n, y′) is a map sending

(v : [m] → [1])

to
(A′ → A → A′′, u : [n] → [m]) -→ (A′ → A → A′′, u : [n] → [m])

where u is defined in the same way as before and A′ is the composite

Arr([m])
u→ Arr([n])

y′→ C.
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To see that this actually does lift the simplicial contracting homotopy on ∆n

as desired, we note that for each j ∈ [m], u(j) ≤ u(j), so there is a natural
transformation of functors

(u : [m] → [n]) -→ (u : [m] → [n]).

Consequently, there is a natural transformation of functors

(u∗ : Arr([m]) → Arr([n])) → (u∗ : Arr([m]) → Arr([n])

and u∗ induces a natural transformation of the composite functors

Arr([m]) → Arr([n])
y→ C

or in other words a map from y′ to A′ in SmC. Such a map is necessarily unique
because it is induced by a map Arr([m]) → Arr([n]) of partially ordered sets.
We define A′ → A → A′′ by letting A′′ = A′′ and letting A be a particular
choice of pushout

A′

""

!! !! A

""
A′ !! !! A

so that by construction A′ → A → A′′ is a cofiber sequence. We therefore ask
that A satisfies the following:

1. we let A be the object-wise pushout so that for each functor θ : [1] → [n],
there are pushouts

A′(θ)

""

!! !! A(θ)

""
A′
(θ) !! !! A(θ)

2. if A′ → A′ is the identity, then we choose A → A to be the identity,

3. if A′
= 0, then we ask that A → A is exactly the map A → A′′.

Since making these choices satisfies the universal property of the pushout, we
can insist that this is our explicit model for the pushout.

It suffices to check that the construction of A′ → A → A′′ is compatible
with the maps in ∆/[1]. Given a map [m′] → [m] over [1], we need to check
that the constructions of A′ → A → A′′ are compatible. Using our explicit
choice of pushout, this compatibility follows.

The only part of the proof that is outstanding is therefore the proof of
Proposition 5.2.14.
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Proof of Proposition 5.2.14. We apply Lemma 5.2.17 to the map

(d0)∗ : s•S2C → s•C.

In particular, since s0C = ∗, we have a homotopy fiber sequence

f /(0, ∗) → s•S2C → s•C (5.2.19)

where f /(0, ∗) = s•S′
2C where S′

2C ⊂ S2C is the subcategory of cofibrations
of the form 0 → B ∼= B and therefore the category S′

2C is equivalent to C. The
fiber sequence is equivalent to

s•C → s•S2C → s•C. (5.2.20)

We consider the map

s•C !! s•C × s•C

∨
""

!! s•C

s•C !! s•S2C !! s•C.

(5.2.21)

of fiber sequence from the trivial fibration where the middle vertical map is
induced by the exact functor sending (A, B) to A → A ∨ B → B. Therefore,
the middle vertical map is a homotopy equivalence on geometric realizations.
The map

(d0)∗ ∨ (d1)∗ : s•S2C → s•C × s•C (5.2.22)

is a retract of this other map and therefore the map (5.2.22) induces a homo-
topy equivalence on geometric realization as well.

5.3 Consequences of the Additivity theorem

Let C be a Waldhausen category. We have already shown that if the sequential
spectrum K(C) is an ω-spectrum then this implies that K(C) satisfies the
additivity theorem. Our goal is to prove the converse: that the additivity
theorem implies that K(C) is an Ω-spectrum. We begin with a construction.

Definition 5.3.1 (Decalage). Given a simplicial object

X• : ∆op → C

in a category C, then the Decalage of X•, or path object of X•, is the simplicial
object PX• with

P(X•)n = Xn+1, (5.3.2)

dn,P(X•)
k = dn+1,X•

k for 0 ≤ k ≤ n, (5.3.3)

sn,P(X•)
k = sn+1,X•

k for 0 ≤ k ≤ n. (5.3.4)
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Lemma 5.3.5. The map
d1,X•

0 : PX• → X0

of simplicial sets is a simplicial homotopy equivalence.

Proof. The composite

X0
s0,X•

0→ P(X•)
d1,X•

0→ X0

is the identity map by the simplicial identities, so it suffices to show that
there is a simplicial homotopy s0,X•

0 ◦ d1,X•
0 ≃ idP(X•). We specify a simpicial

homotopy using an explicit natural transformation from the functor

∆/[1]op → ∆op P(X•)→ C

to itself. This homotopy sends [n] → [1] to φ∗
a : Xn+1 → Xn+1 where φ∗

a is
induced by a map φa : [n + 1] → [n + 1] defined by

φa(s) =

$
%&

%'

0 if s = 0
s + 1 if a(j) = 1
0 if a(j) = 0

We observe that there is a map of simplicial sets

dk+1,X•
0 : P(X•)k → Xk

and a map from the constant simplicial set X1 into P(X•) since X1 is the 0-
simplices of P(X•).

Example 5.3.6. Let C be a Waldhausen category. Then we have a sequence of
bisimplicial sets

N•wS1C → P(N•wS•C) → N•wS•C

and the composite factors through N•wS0C = ∗ and by Lemma 5.3.5, the
bisimplicial set P(N•wS•C) is contractible. This produces a map

|wC| → Ω|wS•C|

and in fact this is the same map that we constructed earlier by inspection of
the explicit homotopy equivalence PN•wS•C ≃ N•wS0C = ∗. By substituting
C with S•C, we produce a sequence

|N•wS•C| → |PN•wS(2)
• C| → |N•wS(2)

• C|.
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Proposition 5.3.7. The sequence

|N•wS•C| → |PN•wS(2)
• C| → |N•wS(2)

• C|

is a homotopy fiber sequence and consequently

|N•wS(n)
• C| ≃ Ω|N•wS(n+1)

• C|

for all n ≥ 1.

In fact, we will prove a more general theorem and this proposition will be
a special case. For the more general theorem, we need some setup.

Definition 5.3.8. Let f : A → B be an exact functor between Waldhausen
categories. Then define S•(A → B) to be the pullback

S•(A → B) !!

""

PS•B

d•,S•B
0
""

S•(A)
S• f

!! S•(B)

in simplicial Waldhausen categories. In particular, there are pullbacks

Sn(A → B) !!

""

Sn+1B

dn+1,S•B
0
""

SnA
Sn f

!! SnB

and the vertical map on the right has a section (which is not compatible with
the face maps) so Sn(A → B) may be identified with the fiber product

Sn(A)×SnB Sn+1B

so it has objects pairs (A, B) where A is a functor A : Arr([n]) → A and B is a
functor B : Arr([n + 1]) → B such that

dn+1,S•B
0 (B) ∼= B′

where B′ is the functor B′ : Arr([n]) A→ A f→ B.

We note that there is a sequence

B → PS•B → S•B

of simplicial Waldhausen categories, whose composite factors through a point
∗ where B denotes the constant simplicial Waldhausen category. By letting
the map B → S•A be the map that factors through a point, we get a sequence

B → S•(A → B) → S•A

such that the composite factors through a point.
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Proposition 5.3.9. The sequence

|N•wS•B| → |N•S(2)
• (A → B)| → |N•S(2)

• A|

is a homotopy fiber sequence. In particular, the sequence

|N•S•A| → |PN•wS(2)
• A| → |N•wS(2)

• A|

is a homotopy fiber sequence, which implies that K(C) is an Ω-spectrum.

Proof. By [?qx, Lem. 5.2], it suffices to show that the sequence

|N•wS•B| → |N•wS•Sn(A → B)| → |N•wS•SnA|

is a fiber sequence for each n, since |N•wS•SnA| is connected for each n. The
idea is to use the Additivity theorem to show that this sequence is homotopy
equivalent to the trivial fiber sequence

|N•wS•B| → |N•wS•B|× |N•wS•Sn(A)| → |N•wS•SnA|.

Unpacking an object in Sn(A → B), we see that it amounts to a sequence

A0,1 !! !! A0,2 !! !! . . . !! !! A0,n

of cofibrations in A and a sequence

B0,1 !! !! . . . !! !! B0,n+1 (5.3.10)

of cofibrations in B such that

f (A0,1) !! !!

∼=
""

f (A0,2) !! !!

∼=
""

. . . !! !! f (A0,n)

∼=
""

B0,2/B0,1 !! !! B0,2/B0,1 !! !! . . . !! !! B0,n+1/B0,1.

Consider the full subcategory of S′
n(A → B) ⊂ Sn(A → B) consisting of

objects such that all maps in the sequence (5.3.10) are identity maps and A0,k =
0 for all 1 ≤ k ≤ n. It’s clear that there is an equivalence of categories between
B and S′

n(A → B). Let S′′
n(A → B) be the full subcategory of Sn(A → B)

where B0 = 0. Then there is an equivalence of categories between S′′
n(A → B)

and SnA. Consider the cofiber sequence of endofunctors

j′ !! !! id !! !! j′′ : Sn(A → B)→ Sn(A → B)

where

j′(A•,•, B•,•) =( 0 !! !! . . . !! !! 0 , B0 !!
id !! B0,1 !!

id !! . . . !! id !! B0,1 )

id(A•,•, B•,•) =(A•,•, B•,•)

j′′(A•, B•) =(A•,•, 0 !! !! f (A0,1) !! !! . . . !! !! f (A0,n)
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so j′ takes values in S′
n(A → B) and j′′ takes values in S′′

n(A → B). By the
Additivity Theorem, the identity is homotopy equivalent to j′∗ + j′′∗ . Thus the
map

|N•wS•SnA|× |N•wS•B| → |N•wS•Sn(A → B)| (5.3.11)

induced by the exact functor

SnA× B → Sn(A → B)

defined by

s : ( A0,1 !! !! A0,2 !! !! . . . !! !! A0,n , B) -→

( A0,1 !! !! A0,2 !! !! . . . !! !! A0,n , B !! id !! B !! id !! . . . !! id !! B ).

Then letting r = j′∗ + j′∗∗ (where we do not include the equivalence of cat-
egories in the notation), then by inspection r ◦ s = id. Also, the additivity
theorem implies that s ◦ j′∗ + j′∗∗ ≃ id, so this implies the map (5.3.11) is a
homotopy equivalence. This map also agrees with the map from the prod-
uct fibration to our sequence, so up to homotopy the sequence is the trivial
homotopy fiber sequence.

Corollary 5.3.12. The spectrum K(C) is an Ω-spectrum.

5.4 A universal property of algebraic K-theory

The slogan is that algebraic K-theory is the universal functor that splits exact
sequences. We call such functors additive functors. Such functors are part
of the data of what we will call a global Euler characteristic after [20]. For this
definition, let Wald be the category of small Waldhausen categories and exact
functors between them (those preserving 0, cofibrations and weak equiva-
lences and commuting with pushouts along cofibrations). Also, write w1C for
the full subcategory of Arr(C) with objects given by morphisms in wC.

Definition 5.4.1. A global Euler characteristic is a pair (E, χ) where E is a functor

E : Wald → sSet∗

and χ is a natural transformation

χ : ob(−) → E(−),

such that for any C,D in Wald the functor E satisfies:

1. the canonical map E(C ×D) → E(C)× E(D) is a weak equivalence,
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2. the canonical functor
s0 : C → w1C

sending c to idc induces a weak equivalence

E(C) ≃ E(w1C),

3. the additivity theorem (Theorem 5.2.3) holds for E,

4. the functor E is group-like the simplicial set E(C) is a group-like H-space
with multiplication

E(C)× E(C) (s∗ ,q∗)←
≃

E(E(C)) t∗→ E(C)

Example 5.4.2. The functor K(C) is an additive functor and it comes equipped
with a natural transformation

χuniv : ob C → K(C)

via inclusion of 0-simplices.

We let Eul be the category whose objects are global Euler characteristics
and whose morphisms (E, χE) → (F, χF) are natural transformations a : E ⇒
F such that a ◦ χE = χF. We say a morphisms a : (E, χE) → (F, χF) is a weak
equivalence if aC : E(C) → F(C) is a weak equivalence for all small Waldhausen
categories C.

Definition 5.4.3. Let Ho(Eul) be the category with the same objects as Eul and
with morphisms

HomHo(Eul)(E, F) := HomEul(E, F)/ ∼

where f ∼ g if there is a zigzag of weak equivalences f ≃ g.

Implicitly, we claim that this notion of weak equivalence is an equivalence
relation. (To define the homotopy category more carefully, we would use the
technique of formally inverting the class of weak equivalences W so that

Ho(Eul) = Eul[W−1],

but we will not spell out this construction at the moment for brevity.)
We now formulate the universal property of algebraic K-theory.

Theorem 5.4.4 (Universal property). The Euler characteristic (K, χuniv) is the
initial object in Ho(Eul).
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Construction 5.4.5 (Additive approximation). We define a symmetric spec-
trum PFC with n-th space

P′FnC := hocolim
k∈I

ΩkΣn|F(wS(k)
• C)|

where I is the category of finite sets and injective maps. (For a functor

X : J → Top

where J is a small category, we define

hocolim
k∈J

Xk := |[m] → ∐
j∈Nm J

Xj0 |

where j = (j0 → j1 → · · · → jm).)
We then define the additive approximation to be

Fadd(C) := hocolim
n∈N

ΩnP′FnC = Ω 8 PFC

and it is equipped with a natural transformation

η : F → Fadd.

Examples 5.4.6. By Theorem 5.2.1, we have a natural transformation

χuniv : ob(C) → obadd(C) ≃ K(C)

and K(C) is the additive approximation to ob(−).

Theorem 5.4.7. Given a functor F : Wald → sSet∗, the associated functor Fadd is
the universal additive functor equipped with a natural transformation

F → Fadd.

Proof. See [20]. (Fill in later. Didn’t get to this in class)

The universal property of algebraic K-theory clearly follows from this the-
orem.

5.5 Waldhausen’s fibration theorem

For fibration sequences in Waldhausen algebraic K-theory, we need some ex-
tra assumptions on our Waldhausen category: existence of a cylinder functor
satisfying the cylinder axiom and the saturation axiom and extension axiom. We
begin with these notions.
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Definition 5.5.1. We say a Waldhausen category C has a cylinder functor if it is
equipped with a functor

T : Arr(C) → C

equipped with natural transformations of functors Arr(C) → C

j1 : s(−) → T(−) (5.5.2)

j2 : t(−) → T(−) (5.5.3)

p : T(−) → t(−) (5.5.4)

(5.5.5)

such that the diagram

s(−)
j1 !!

$$❋
❋❋

❋❋
❋❋

❋
T(−)

p
""

t(−)
j2##

①①
①①
①①
①①

①①
①①
①①
①①

t(−)

commutes where s( f ) = A and t( f ) = B for a map f : A → B and the natural
transformation s(−) → T(−) send f to the map f : A → B.

Let c1C be the full subcategory of the arrow category whose objects are
cofibrations regarded as a Waldhausen category in the the evident way. We
ask that T(−) satisfies:

1. The functor
Arr(C) → c1C

mapping f to j1( f ) ∨ j2( f ) is exact.

2. We have T(0 → A) = A, for every A in A and j1(0 → A) = p(0 → A) =
idA

Example 5.5.6. The cylinder functor should remind us of the mapping cylin-
der. For example, the Waldhausen category R f (X) has a cylinder functor
defined by

T(Y → Y′) = X ∪X×[0,1] Y × [0, 1] ∪Y×1 Y′

Definition 5.5.7. Suppose C is a Waldhausen category with a cylinder func-
tor. We say C satisfies the cylinder axiom if the the natural transformation
p : T( f ) → t( f ) is in wC for all f in Arr(C).

Definition 5.5.8. Given a Waldhausen category C, we say that C satisfies the
saturation axiom if wC satisfies the 2 out of 3 property; i.e. for any composable
pair of morphisms g ◦ f in C and any two of the set { f , g, g ◦ f } are morphisms
in wC then the third is also.
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Remark 5.5.9. As a consequence, when C is a Waldhausen category with a
cylinder functor satisfying the cylinder functor and it satisfies the saturation
axiom, it follows that j2( f ) is always in wC and that j1( f ) is in wC if and only
if f is in wC.

From a cylinder functor, we can give a few other common constructions in
algebraic topology.

Definition 5.5.10. The cone functor C(−) of a Waldhausen category C with a
cylinder functor T is the composite

C : C → Arr(C) T→ C

where the first functor C → Arr(C) sends A to A → 0; in other words C(A) =
T(A → 0).

Definition 5.5.11. The suspension functor is the functor

Σ(−) : C → C

is the cofiber of the natural transformation

id !! !! C(−) .

Example 5.5.12. The Waldhausen category R f (X) has a cylinder functor sat-
isfying the cylinder axiom and it satisfies the the saturation axiom, when
equipped with the homotopy equivalences as weak equivalences. If one equips
R f (X) with a Waldhausen category structure where the weak equivalences
are homeomorphisms, however, then this does not satisfy the cylinder axiom
since the mapping space X ∪X×[0,1] Y × [0, 1] ∪Y×1 Y′ is homotopy equivalent
to Y′ in R f (X), but it is not homeomorphic to Y′.

Example 5.5.13. Exact categories do not usually have cylinder functors, how-
ever let Chb(C) be the category of bounded chain complexes in an exact cate-
gory C such as the category of finitely generated R module M(R) where R is
a commutative ring. Then Cb(C) is a Waldhausen category with cofibrations
the level-wise admissible monomorphisms and weak equivalences the quasi-
isomorphisms (maps that are quasi-isomorphisms in the ambient abelian cat-
egory Chb(A)). This Waldhausen category has a cylinder functor given by the
usual mapping cylinder sending f : A• → B• to the chain complex T( f ) with

T( f )n = An ⊕ An−1 ⊕ Bn

and the suspension functor ΣA is the shift operator A•[−1] so that

(ΣA)n = An−1.
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Lemma 5.5.14. If C is a Waldhausen category with a cylinder functor then SnC is a
Waldhausen category with a cylinder functor

SnT : Arr(SnC) = Sn(Arr((C))) → Sn(C))

with natural transformations Sn j1, Sn j2, and Sn p. When the cylinder functor of C
satisfies the cylinder axiom, then so does the cylinder functor of SnC. The C satisfies
the saturation axiom, then SnC also satisfies the saturation axiom.

Proof. Left as an exercise.

Note that as a consequence of the additivity theorem, algebraic K-theory
is an H-space with operation induced by the composite exact functor

C × C ∨→ S2C
d1→ C

sending (A, B) to A ∨ B. The suspension functor allows us to define a ho-
motopy inverse for this operation when our Waldhausen category C has a
cylinder functor that also satisfies the cylinder axiom.

Proposition 5.5.15. If C is a Waldhausen category with a cylinder functor satisfying
the cylinder axiom, the the suspension functor induces a map

Σ : K(C) → K(C

which represents a homotopy inverse in the H-space structure on K(C) give by sum.
Consequently, K(C) is a group-like H-space.

Proof. Consider the cofiber sequence

id !! !! C !! !! Σ : C → C

of exact functors. Then by the additivity theorem, we know that (Σ)∨ (id)∗ ≃
(C)∗. Since CA → 0 is a weak equivalence by assumption for all A in C,
(C)∗ is nullhomotopic and consequently (Σ)∗ ∨ (id)∗ is null homotopic. Thus,
ΣA + A = 0 in the H-space structure on K((C).

Definition 5.5.16. We say that a Waldhausen category C satisfies the extension
axiom if for each map of cofiber sequences

A !! !!

""

B !! !!

""

C

""
A′ !! !! B′ !! !! C′

such that A → A′ and C → C′ are weak equivalences then B → B′ is also a
weak equivalence.
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Theorem 5.5.17 (Waldhausen’s fibration theorem). Let (C, cC) be a category
with cofibrations equipped with two wide subcategories vC ⊂ wC of weak equiva-
lences such that (C, cC, wC) and (C, cC, vC) are Waldhausen categories. Suppose that
(C, cC, wC) is satisfies the saturation axiom, the extension axiom, and it is equipped
with a cylinder functor satisfying the cylinder axiom. Let Cw be the full sub Wald-
hausen category of (C, cC, vC) consisting of A in C such that 0 → A is a map in wC.
Then there is a homotopy fiber sequence

K(Cw) → K((C, cC, vC) → K((C, cC, wC).

[Gabe: Add remarks about bicategories.]

Definition 5.5.18. We define a bicategory vwC with bimorphisms given by
commutative squares

a w !!

v
""

b

v′
""

a′ w′
!! b′

where horizontal morphisms w and w′ are maps in wC and the vertical mor-
phisms v and v′ are maps in vC.

Lemma 5.5.19. If (C, cC, wC) is a Waldhausen category with a cylinder functor
satisfying the cylinder axiom and the saturation axiom, then the inclusion of the
subcategory of acyclic cofibrations wC ⊂ wC (where wC = cC ∩ wC) induces a
homotopy equivalence

|N•wC| ≃ |N•wC|.

Proof. Let i : wC ↩→ wC be the inclusion. By Quillen’s theorem A, it suffices
to show that i\B is contractible for all B in wC. Recall that an object in i\B is
a pair (A, f : A → B) where f is in wC. Since the cylinder functor satisfies
the cylinder axiom, the map T( f ) → B is in wC so we can define a functor
t : i\B → i\B by t(A, f ) = (T( f ), p). Then j1( f ) and j2( f ) are also in wC
by the saturation axiom and the cylinder axiom. They are also cofibrations
by the axioms of a cylinder functor so they are maps in wC. Then there is a
natural isomorphism p ◦ j1( f ) ≃ f and p ◦ j2( f : A → B) = idB. Thus there
are homotopies

idi/B ≃ t ≃ constB

so i/B must be contractible. Since this argument did not depend on a partic-
ular choice of B, we have prove then claim.

Lemma 5.5.20 (Swallowing lemma). Let A be a subcategory of B and let AB be
the bicategory of the commutative squares with vertical arrows in A and horizontal
arrows in B, then the map

B → AB
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induces a homotopy equivalence

|N•B| ≃ |Nhor
• Nver

• AB|.

Proof. If suffices to prove that for each n the map

NnB → Nver
n AB

induces an equivalence on geometric realizations. For fixed n, we define a
map

Nvert
n AB → B

taking a sequence A0 → . . . An to A0. This is clearly a left inverse to the
inclusion, so it suffices to shoe that the other composite is homotopic to the
identity. This takes a sequence A0 → . . . An to the sequence A0 → . . . A0 of
identity maps. We produce a natural transformation from this functor to the
identity by way of the commuting square

A0
id !!

id
""

A0
id !!

a1

""

. . . id !! A0

an◦···◦a1

""
A0 a1

!! A1 a2
!! . . . an

!! An

and therefore B is a deformation retract of Nvert
n AB.

Proof of Theorem 5.5.17. Consider wC a a bicategory which is vertically con-
stant so that there is an evident map of bicategories

wC → vwC

and applying the nerve in the vertical direction we have a map

wC → Nvert
• vwC

of simplicial categories that induces a homotopy equivalence after applying
the nerve and geometric realization by Lemma 5.6.2. After passing to nerves
and diagonalizing there is a map

Nvert
• Nhor

• vwC → N•wC

which is a left inverse to the inclusion and again by Lemma 5.6.2 this is a
homotopy equivalence.

By first applying the S•-construction we produce a simplicial bicategory
vwS•C and again this is homotopy equivalence to wS•C after passing to nerves.
Let vwC denote the sub-bicategory of vwC such that the horizontal morphisms
are also cofibrations. Then the inclusion

vwC → vwC
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induces a homotopy equivalence by Lemma 5.5.19, which uses the cylinder
functor satisfying the cylinder axiom and the saturation axiom. Again, we can
form a simplicial bicategory vwS•C in the same way. The square of interest
for our theorem is the outer square in the diagram

vS•Cw !!

""

vwS•Cw !!

""

vwS•Cw !!

""

wS•Cw

""
vS•C !! vwS•C !! vwS•C !! wS•C.

(5.5.21)

We have already shown that the horizontal maps in the middle and the right
induce homotopy equivalences upon geometric realization, so it suffices to
show the square on the left is induces a homotopy pullback after geometric
realization and that wS•Cw is contractible after geometric realization. How-
ever, since 0 → A is in wC for each A in Cw, the category wCw is equivalent to
the terminal category and similarly for wS•Cw. We therefore just need to show
that the left square in the diagram (5.5.21) induces a pullback after applying
geometric realization.

We will do this by identifying vwC with vS(2)
• f after applying geomet-

ric realizations and then producing the desired homotopy fiber sequence by
applying Proposition 5.3.9 and the additivity theorem.

To make this identification, we note that by the extension axiom of (C, cC, wC)
a cofibration in C that is also a weak equivalence is the same data as a cofibra-
tion whose quotient lies in Cw. In particular, we have an equivalence of cat-
egories between S1C and wC. More generally, we produce an equivalence of
categories between SnC and NnwC and therefore an equivalence of categories
between vSnC and Ntexthor

n vwC. By the same argument, we get an equivalence
of categories between vSmSn f and Nvert

n vwSmC and therefore after applying
nerves and geometric realization we get a homotopy equivalence

|N•vS(2)
• | ≃ |Nhor

• Nvert
• vwS•C|

and by inspection this homotopy equivalence is compaible with the maps from
vS•C as required.

As an application, we will prove the Gillet-Waldhausen theorem which
reduces the algebraic K-theory of bounded chain complex in an exact category
C to the algebraic K-theory of C.

Theorem 5.5.22 (Gillet-Waldhausen Theorem). Let C be an exact category embed-
ded in an abelian category A, which is closed under kernels of surjections in A. Then
the exact inclusion

C → Chb(C)
of Waldhausen categories induces a homotopy equivalence

K(C) ≃ K(Chb(C)).



5.5. WALDHAUSEN’S FIBRATION THEOREM 95

Definition 5.5.23. We say that a sequence 0 → An → . . . A0 → 0 in an exact
category C is admissibly exact if each map decomposes as

Ai+1 !! !! Bi !! !! Ai

such that
Bi !! !! Ai !! !! Bi+1

is an exact sequence in C. Let C [a,b]
exact denote the Waldhausen category of ad-

missibly exact sequences of length b − a with weak equivalences defined to be
level-wise weak equivalences and cofibrations A → A′ defined to be level-wise
cofibrations Ai → A′

i such that the pushout Ai ∐Bi
B′

i → A′
i is a cofibration.

Remark 5.5.24. By the Additivity theorem, one can prove by induction that
there is a homotopy equivalence

K(C [0,n]
exact) ≃

n

∏
i=1

K(C).

Proof of Theorem 5.5.22. We will apply the localization sequence in the case
where (C, cC) is the category of bounded chain complexes bfChb(A) in an
exact category A and the cofibrations are level-wise admissible monomor-
phisms. The weak equivalences wC are the quasi-isomorphisms so the Wald-
hausen category (Chb(A), cChb(A), wChb(A) has a cylinder functor satisfy-
ing the cylinder axiom and it satisfies the saturation axiom and the extension
axiom. We let vChb(A) be the wide subcategory whose morphisms are iso-
morphisms. We therefore have a fiber sequence

K(Chb(A)w) → K(Chb(A), v) → K(Chb(A), w) (5.5.25)

where Chb(A)w is the full sub Waldhausen category of (Chb(A, cChb(A, vChb(A)
whose objects are quasi-isomorphic to 0. We first consider the full sub Wald-
hausen category Ch[a,b](A)cCh[a,b](A), vCh[a,b](A)) ⊂ (Chb(A), cChb(A), vChb(A))
consisting of chain complexes C• such that Ci = 0 whenever i doesn’t satisfy
a ≤ i ≤ b. Then there is also a correseponding sub Waldhausen category

Ch[a,b](A)w

of those chain complexes C• bounded between a and b such that C• is quasi-
isomorphic to 0. Such chain complexes can be identified with objects in A[a,b]

exact.
Moreover, we can identify

K(Ch[a,b](A)cCh[a,b](A), vCh[a,b](A)) ≃
b

∏
a

K(A)
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by the additivity theorem. We therefore produce a fiber sequence

b

∏
a+1

K(A) →
b

∏
a

K(A)
χ→ K(A)

where χ is induced by the Euler characteristic. Passing to colimits over a and
b we produce a homotopy fiber sequence

K(Chb(A)w) → K(Chb(A), v) → K(A)

which is compatible with maps from the localization sequence (5.5.25).

Exercise 5.5.26. Use the additivity theorem to prove that

K(Ch[a,b](C)) ≃
b

∏
i=a

K(C).

5.6 Agreement of the S•-construction and the Q-
construction

We’ve seen that every exact category is a Waldhausen category. We would
therefore like to know that there is a homotopy equivalence between the two
notions of algebraic K-theory in this case. Even though the the Q-construction
is recovered from Waldhausen’s S•-construction, the Q-construction has some
advantages for proving fundamental theorems. The Dévissage theorem, for
example, isn’t always known to have a counterpart in the setting of Wald-
hausen categories.

To show that the Q-construction and the S•-construction produce the same
K-theory space, we need to introdue the edgewise subdivision of a simplicial
object.

Definition 5.6.1. We define a functor

sde : ∆ → ∆

so that sde([n]) = [2n + 1] and on morphisms θ : [n] → [m] by

sde(θ) : [2n + 1] → [2m + 1] (5.6.2)

sde(θ)(s) =

*
θ(s) if 0 ≤ i ≤ n
θ(s − n − 1) + (m + 1) if n ≤ i ≤ 2n + 1

(5.6.3)

Writing [2n+ 1] = [n]∐[n] then this is simply defining morphisms by sending
θ to

sde(θ) = θ ∐ θ : [n]∐ [n] → [m]∐ [m].
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We then define the edgewise subdivision of a simplicial object in C denoted X•
as

X• ◦ (sde)op : ∆op (sde)op

→ ∆op X•→ C.

For short we write Xe
• := X• ◦ (sde)op and we write de

i and se
i for its face and

degeneracy maps.

Example 5.6.4. In particular, let ∆2 be the standard simplicial 2-simplex. Then
(∆2)e can be drawn as

•

✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌

✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶

•

✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌

✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶ •

✌✌
✌✌
✌✌
✌✌
✌✌
✌✌
✌

✶✶
✶✶
✶✶
✶✶
✶✶
✶✶
✶

• • •.

(There is a difference between the edgewise subdivision and the Quillen-Segal
subdivision. Sometimes the edgewise subdivision we use here is denoted
sd2 to distinguish it from the Quillen-Segal subdivision which is sometimes
denoted sde.)

Remark 5.6.5. The face and degeneracy maps in Xe
• with structure maps se

i
and de

i satisfy the following compatibility with the face and degeneracy maps
si and di of X•:

Xe[n]
de

i !! Xe[n − 1]

X[2n + 1]
dn−i◦dn+i+1 !! X[2n − 1]

Xe[n]
se

i !! Xe[n + 1]

X[2n + 1]
sn−i◦sn+i+1 !! X[2n + 1]

Theorem 5.6.6. There is a canonical map

Xe
• → X•
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of simplicial sets inducing a homeomorphism

|Xe
•| → |X•|

on geometric realizations.

We leave the proof for later, but it will be a key ingredient in the follow-
ing comparison between Q-construction and the S• construction. Let C be an
exact category. We will write isoB ⊂ B for the subcategory whose arrows
consist of all the isomorphisms of B so (C, cC, isoC) forms a Waldhausen cat-
egory where cofibrations are the admissible monomorphisms. We can also
regard the nerve N•QC as a simplicial category by considering the category
of functors [n] → QC and natural isomorphisms. We write isoN•QC for this
simplicial category. We first remark that the nerve of this simplicial category
is homotopy equivalent to the nerve of QC on geometric realizations:

Lemma 5.6.7. There is a homotopy equivalence

|N•QC| ≃ |N•isoN•QC|.

Proof. The proof is very similar to that of Proposition 5.6.2, so we omit it
here.

We can now prove the comparison theorem

Theorem 5.6.8. There is a homotopy equivalence

BisoS•C
∼= !! |(N•(isoS•C))e| W !! BQC

where the first map is the inverse of the canonical homeomorphism of Theorem 5.6.6.
Consequently, there is a homotopy equivalence

KW(C) := ΩBisoS•C ≃ ΩBQC =: KQ(C)

when C is an exact category regarded as a Waldhausen category with cofibration the
admissible monomorphisms and weak equivalences the isomorphisms.

The first goal will be to define a simplicial map

W : (s•C)e → N•QC.

To do this we first need to define a map

Wk : s2k+1C → NkQC
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on k-simplices. The map is the identity when k = 0. More generally, note that
an object in s2k+1C is a digram of the form

A0,1 !! !! A0,2 !! !!

""""

. . . !! !! A0,2k

""""
A1,2 !! !! . . . !! !! A1,2k

""""
...

""""
A2k−1,2k

which corresponds to composite of k-spans sitting inside this diagram of the
form

Ak−1,k+1

888866
66
66
66
6 99

99▲
▲▲

▲▲
▲▲

▲▲
▲

. . .

%%%%✇✇
✇✇
✇✇
✇✇
✇✇
11

11❄
❄❄

❄❄
❄❄

❄❄
❄ A0,2k−1

'' ''❍
❍❍

❍❍
❍❍

❍❍

::::①①
①①
①①
①①
①①

Ak,k+1 Ak−1,k+2 . . . A0,2k

Lemma 5.6.9. This map is actually a simplicial map.

Proof. This is left as an exercise for now.

Lemma 5.6.10. The map

Wk : s2k+1C → NkQC

is a surjection.

Proof. Let C : [k] → QC be a k-simplex of N•QC. Define Ci = Ak−i,k+i+1 and
for αi,i−1 : i → i − 1 a map in [n] choose representatives for the morphisms
C(αi,i−1) : Ci → Ci−1

Ak−i,k+i+1 Ak−i−1,k+i+1#### !! !! Ak−i−1,k+i+2.

We have therefore defined Ai,j for i < j and i + j = 2n+ 1 as well as i + j = 2n.
To define Ai,j for i + j = 2n − 1 and 2n − 2, we take pushouts and pullbacks
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to form a commuting diagram where each square is a pullback

An−i−1,n+i !! !!

""""

An−i−1,n+i+1 !! !!

""""

An−i−1,n+i+2

""""
An−i,n+i !! !!

""""

An−i,n+i+1 !! !!

""""

An−i,n+i+2

""""
An−i+1,n+i !! !! An−i+1,n+i+1 !! !! An−i+1,n+i+2

We then proceed inductively to define Ai,j for the remaining i, j. This defines
an object A ∈ s2k+1C that maps to NkQC.

Note that the map Wk extends to a functor so that we can regard the map

W• : (isoS•C)e → isoN•QC

is a map of simplicial categories. The result we just proved is a statement
about the map on objects.

Lemma 5.6.11. The functor

Wk : (isoS•C)e → isoN•QC

is an equivalence of categories for each k.

Proof. We showed that the map is surjective on objects, so we just need to
show that the functor is fully faithful. We already observed in Remark qxqx
that there is a bijection

isoC(A, B) ∼= isoQC(A, B)

which shows that the functor

W0 : isoS1C → isoQC

is fully faithful. More generally, we want to show that the map

isoS2k+1C(A, A′) → Fun([n], isoQC)(Wk(A), Wk(A′))

is a bijection. For surjectivity, let

t : Wk(A) → Wk(A′)

be a natural isomorphism of functors [k] → QC. For each 0 ≤ i ≤ k, there is a
map t(i) represented by a commuting diagram

Ak−i,k+i+1

∼= f0
""

Ak−i−1,k+i+1
j0,1#### !!

i0,1 !!

∼= f0,1
""

Ak−i−1,k+i+2

∼= f1
""

A′
k−i,k+i+1 A′

k−i−1,k+i+1

j′0,1#### !!
i′0,1 !! A′

k−i−1,k+i+2

(5.6.12)
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in QC where the vertical morphisms are isomorphisms in QC. We claim that
this implies that the maps Ak−i−1,k+i+1 → A′

k−i−1,k+i+1 must also be isomor-
phisms. To see this, we note that commutativity of the diagram (5.6.12) implies
that the map

Ak−i−1,k+i+1 ∼=

f0,1 !!

j0,1
""""

A′
k−i−1,k+i+1

j′0,1
""""""

!!
i′0,1 !! A′

k−i−1,k+i+2

Ak−i,k+i+1

∼= f0

""

∼=
f0 !! A′

k−i,k+i+1

A′
k−i,k+i+1

and the map

A′
k−i−1,k+i+1

!!
i0,1 !!

j0,1
""""

Ak−i−1,k+i+2 !!
f1

∼=
!! A′

k−i−1,k+i+2

A′
k−i,k+i+1

in QC are in the same equivalence class and consequently the map

Ak−i−1,k+i+1 → A′
k−i−1,k+i+1

is an isomorphism. Since both pullbacks and pushouts preserve isomor-
phisms, we can inductively show that A → A′ is also an isomorphism, or
in other words a map in isoSkC. To prove injectivity, consider two morphisms

t0, t1 : A → A′

in isoSkC such that Wk(t0) = Wk(t1), then we know

t0 = t1 : Ai,j → A′
i,j

for i + j = 2n and i + j = 2n + 1. By functoriality of pullback and pushouts,
the same inductive argument as before proves that

t0 = t1 : Ai,j → A′
i,j

for the remaining i, j as desired.

Now we can prove that there is an equivalence between Quillen’s Q-construction
and the Waldhausen S•-construction as desired.
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Proof of Theorem 5.6.8. By Lemma 5.6.11, we have an equivalence of simplicial
categories

Wk : (isoS•C)e → isoN•QC.

Applying the nerve to both sides, we know that on geometric realizations we
have a homotopy equivalence

|N•(isoS•C)e| → |N•isoN•QC|.

precomposing with the homeomorphism

|N•(isoS•C| ∼= |N•(isoS•C)e|

of Theorem 5.6.6 and post-composing with the homotopy equivalence

|N•isoN•QC| ≃ |N•QC|.

gives our desired homotopy equivalence.



Appendix A

Fundamentals

A.1 Categories

Category theory will be of fundamental importance in studying algebraic K-
theory. We recall the basic notions here.

Definition A.1.1. A category C consists of

1. a class of objects denoted ob(C)
2. for each pair of objects c, c′ a set C(c, c′) of morphisms from c to c′, and

3. for any triple c, c′, c′′ a map of sets

− ◦− : C(c′, c′′)× C(c′, c′′) → C(c, c′′)

4. For each object c an element

idC ∈ C(c, c).

satisfying
( f ◦ g) ◦ h = f ◦ (g ◦ h)

for each triple of maps

( f , g, h) ∈ C(c′′′, c′′)× C(c′′, c′)× C(c′, c)

and
idc′ ◦ f = f = f ◦ idc

for each map f : c → c′ in C(c, c′), where each of these identities are functorial
in the appropriate sense.

Example A.1.2. Given a category C, let Cop be the category whose objects are
the same as the objects in C and there is a unique morphism f op : b → a for
every morphism f : a → b in C.

103
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Remark A.1.3. Note that we use the convention that all categories are locally
small by requiring that C(c, c′) is a set rather than a proper class. We say a
category is a small category if, in addition, it has a set of objects ob(C).

Definition A.1.4. The skeleton skC of a cat egory C is the full subcategory of
C consisting of one object for each isomorphism class of objects in C. We say
that C is skeletally small if skC is a small category.

Example A.1.5. The category of sets and set maps, denoted Set, is an example
of a category that is not a small category. The category of finite sets and maps
of finite sets is skeletally small and we write Fin for its skeleton.

Example A.1.6. Let C be a small category. Then there is a category Arr(C)
whose objects are maps f : a → b in C and a morphism from a → b to c → d
is a commuting square

a !!

""

b

""
c !! d

in C. Composition is defined by vertical composition of squares. We call this
category the arrow category.

Definition A.1.7. A functor F : C → D associates to each object c ∈ ob C an
object F(c) ∈ obD, to each morphism f : c → c′ a morphism F( f ) : F(C) →
F(c′) in D such that F( f ◦ g) = F( f ) ◦ F(g).

Example A.1.8. Let Top denote the category of topological spaces and contin-
uous maps. Then any topological space may be regarded as a set by forgetting
the topology and any continuous map is in particular a map of sets, so this
defines a functor

U : Top → Set

called the forgetful functor.

Definition A.1.9. A subcategory C in D consists of a category C and a functor
ι : C → D such that

C(c, c′) → D(ι(c), ι(c′)) (A.1.10)

is injective. In particular, this implies that the set of objects in c inject in the
set of objects of D.

We say C is a full subcategory if the map (A.1.10) is also surjective. More
generally, we say a functor F : C → D is faithful if the associated map

C(c, c′) → D(F(c), F(c′)) (A.1.11)

is is injective and we say it is fully faithful if this map is also surjective. In
this case, we say that there is a fully faithful embedding of C in D since the
essential image of C in D is necessarily a full subcategory of D.
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Definition A.1.12. Given a pair functors F, G : C → D, then a natural trans-
formation γ : F ⇒ G associates to an object x in C a map γx : F(x) → G(x)
and to a map f : x → y a commutative diagram

F(x)
F( f )

!!

γx

""

F(y)

γy

""
G(x)

G( f )
!! G(y)

(A.1.13)

and to a composable pair of morphisms g ◦ f in C where f : x → y and
g : y → z, then there is a commutative diagram

F(x)
F( f )

!!

γx

""

F(y)

γy

""

F(g)
!! F(z)

γz

""
G(x)

G( f )
!! G(y)

G(g)
!! G(z).

Definition A.1.14. The functor category Fun(C,D) is the category whose ob-
jects are functors F, G : C → D and whose morphisms are natural transfor-
mations γ : F ⇒ G, where composition is given by composition of natural
transformations where α ◦ β is defined on objects by

(α ◦ β)x := αx ◦ βx

and on morphisms f : x → y by vertical composition of squares of the form
(A.1.13) and similarly for compositions of morphisms.

Definition A.1.15. A factorization system on a small category C consists of of
a pair of subcategories (E, M) such that

1. E and M each contain all of the isomorphisms in C and consequently all
objects in C, and

2. every morphism f : A → C in C can be factored as f = m ◦ e where
e : A → B is a map in E and m : B → C is a map in M.

3. this factorization defines a functor

Arr(C) → Arr(E)×C Arr(M)

sending f to (m, e) and a commutative square

A
f
!!

g
""

C

g′′
""

A′ f ′
!! C′
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to the composition of squares

A e !!

g
""

B

g′
""

m !! C

g′′
""

A′ e′ !! B′ m′
!! C′.

Here the category Arr(E) ×C Arr(M) is the pullback in the category of
small categories of the diagram

Arr(M)
t !! C Arr(E)s##

where t sends an object e : A → B in Arr(E) to B and s sends an object
m : B → C in Arr(M) to B. On morphisms these functors are defined
in the evident way. In other words, the category Arr(E)×C Arr(M) has
objects pairs of morphisms (e, m) such that, as maps in C, they are com-
posable.

A.2 Sets

Definition A.2.1. A partial order on a set P is a binary relation ≤ satisfying

1. x ≤ x (Reflexivity),

2. if x ≤ y and y ≤ x, then x = y (Anti-symmetry),

3. if x ≤ y and y ≤ z, then x ≤ z (Transitivity).

We say x is related to y if either x ≤ y or y ≤ x. A set with a partial order will
be called a partially ordered set or a POSet for short.

Any POSet P can be considered as a small category with objects the ele-
ments of P and morphism sets

P(x, y) =

*
∗ x ≤ y
∅ otherwise

and composition
P(y, z)× P(x, y) → P(x, z)

is defined in the obvious way using transitivity.

Definition A.2.2. A total order on a set X is a partial order satisfying the
totality axiom: for each x, y ∈ X either x ≤ y or y ≤ x.

In other words, a totally ordered set is simply a partially ordered set in
which any two elements are related.
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Example A.2.3. The natural numbers

N0 = {0, 1, 2, . . . }

are a totally ordered set with the usual total order. The set n = {0, 1, . . . , n} is
a finite totally ordered set equipped with the restriction of the total order on
N0. When we view the totally ordered set n as a category it can be depicted
as

0 ← 1 ← 2 ← · · · ← n.
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Appendix B

Simplicial methods

B.1 The simplex category

Definition B.1.1. Let Ord denote the category of finite totally ordered sets and
maps of finite sets that preserve the total order. Let ∆ be the the skeleton of
this category with exactly one object for each isomorphism class of objects in
Ord. The objects in ∆ are

[n] = {0, 1, . . . , n}
for n ≥ 0 and the maps are nondecreasing maps of finite sets.

Example B.1.2. There is a canonical factorization system (E, M) on the cate-
gory ∆. The category E consists of all isomorphisms as well as the closure
under composition of the maps of the form

σk : [n] → [n − 1]

for 0 ≤ k ≤ n such that

σk(i) =

$
%&

%'

i if i < k
k if i = k, k + 1
i − 1 if k + 1 ≤ i ≤ n.

The category M consists of all isomorphisms as well as the closure under
composition of the morphisms

δk(i) =

*
i if i < k
i + 1 if k ≤ i ≤ n.

We can therefore depict the category ∆ as follows

[0]
!!
!! [1]##

!!
!!
!!
[2]##

##
!!

!!

!!
!! . . .

##

##
## (B.1.3)
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Definition B.1.4. Given a category C, a simplicial object in C is a functor

∆op → C.

This can be described as a collection of objects {X[i]}i≥0 sitting in a dia-
gram

X[0] !! X[1]##
## !!

!! X[2]
##
##
## !!

!!
!! . . .

##

##

##
##

(B.1.5)

where the maps in the diagram are called the face maps

{∂i : X[n + 1] → X[n]}0≤i≤n+1

and degeneracy maps

{si : X[n] → X[n + 1]}0≤i≤n

and these must satisfy the simplicial identities:

1. ∂i ◦ ∂j = ∂j−1 ◦ ∂i if i < j,
2. si ◦ sj = sj ◦ si−1 if i > j,

3. ∂i ◦ sj =

$
%&

%'

sj−1 ◦ δi if i < j
idXj if i = j or i = j + 1

sj ◦ δi−1 if i > j + 1

Morphisms of simplicial objects in C are simply natural transformations of
functors ∆op → C.

Example B.1.6. When C = Set, we call a simplicial object in Set simply a
simplicial set and we write sSet for this category. We could also consider
pointed sets Set∗ and we will write sSet∗ for the category of simplicial objects
in pointed sets (or equivalently, pointed simplicial sets). When C = Top we
refer to the category of simplicial objects in Top simply as simplicial spaces
and we denote the category of simplicial spaces by sTop.

Example B.1.7. Given an object [n] ∈ ∆, we can form

Hom∆(−, [n]) : ∆op → Set.

This is clearly a simplicial set. We denote this simplicial set

∆n := Hom∆(−, [n]).

Exercise B.1.8. Use the Yoneda lemma to show that

HomsSet(∆
n, X) = X[n].

Hint: Write ιn := id ∈ Hom∆([n], [n]). Given a simplicial map ϕ : ∆n →
X, associate to this map an n-simplex ϕ(ιn) ∈ X[n]. Prove that this gives a
bijection.
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Definition B.1.9. We define a topological space

|∆n| = {(t0, . . . , tn) ∈ [0, 1]n+1 : ∑ ti = 1}

equipped with the subspace topology. In fact, the spaces |∆n| form cosimpli-
cial space

|∆•|(−) : ∆ → Top

such that |∆•|([n]) = |∆n|. The map

θ∗ : |∆n| → |∆m|

induced by θ : [n] → [m] is defined by

θ(t0, t1, . . . tn) = (t′0, . . . t′m)

where

t′i =

*
0 if θ−1(i) ∕= ∅,

∑j∈θ−1i tj if θ−1(i) = ∅.

Remark B.1.10. There is also an analogous cosimplicial simplicial set

∆n : ∆ → sSet

given on n-simplices by
∆n = Hom∆(−, [n])

where the cosimplicial structure is given by regarding this as a functor in the
second variable.

Definition B.1.11. Given a pair of simplicial sets X, Y, we define the product
of simplicial sets X × Y by letting the n-simplices be simply

(X × Y)[n] = X[n]× Y[n]

and the face and degeneracy maps simply as

∂X×Y
i = (∂X

i , ∂Y
i ) and sX×Y

i = (sX
i , sY

i ).

Note that the non-degenerate n-simplices of X ×Y are not simply the product
of the non-degenerate n-simplices of X with the non-degenerate n-simplices
of Y.

Definition B.1.12. We also define an internal hom Hom(X, Y) to be the sim-
plicial set with n-simplices

Hom(X, Y)[n] := HomsSet(X × ∆n, Y)

and face and degeneracy maps induced by considering ∆n as a cosimplicial
object in sSet and applying the functor HomsSet(X ×−, Y).
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Proposition B.1.13. The category (sSet,×, ∆0) is a a symmetric monoidal category
and there is a natural isomorphism

HomsSet(X × Y, Z) ∼= HomsSet(X, Hom(Y, Z)).

Definition B.1.14. We say f : X → Y is homotopy equivalent to g : X → Y if
there is a map of simplicial sets

H : X × ∆1 → Y

such that H|(ι0)∗(∆0) = f and H|(ι1)∗(∆0) = g where (ιj)∗ : ∆0 → ∆1 is the map
of simplicial sets induced by the unique map ιj : [0] → [1] map in ∆ sending
0 to j; i.e.

(ιj)∗ := Hom(−, ιj) : Hom(−, [0]) → Hom(−, [1]).

Let ∂∆n denote the smallest sub-simplicial set of ∆n generated by the faces
dj(ιn) for 0 ≤ j ≤ n. where ιn denotes the element

ιn = id ∈ Hom∆([n], [n]) = HomsSet(∆
n, ∆n) = (∆n)n

Let Λn
k denote the smallest sub-simplicial set of ∆n generated by the faces

di(ιn) for the face dk(ιn). We say a simplicial set is a Kan complex if there
exists a unique lift in any diagram of the form

Λn
k

!!

""

X

∆n
∃!h

((⑦
⑦

⑦
⑦

for 0 ≤ k ≤ n. Where Λn
k is the sub-simplicial set of ∆n generated by dj(ιn)

We can consider the full subcategory of the category of simplicial sets
whose objects are the category of Kan complexes.

Let X, Y be Kan complexes and define

[X, Y] = Hom(X, Y)/ ≃

where ≃ is the equivalence relation given by simplicial homotopy equivalence.

Definition B.1.15. Define the homotopy category of simplicial sets, denoted
ho(sSet) to be the category whose objects are Kan complexes and morphisms
from X → Y are [X, Y]. We define the homotopy category of Top, denoted
ho(Top) to be the category whose objects are CW complexes and maps are
homotopy classes of maps from X to Y, which we also denote [X, Y].

Construction B.1.16. Let X be an object in Top. We define

sing(X) = HomTop(|∆•|, X).

This is clearly a simplicial set. One can check that it is also a Kan complex
when X is a CW complex.
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We will now define geometric realization, more generally, of a simplicial
space.

Construction B.1.17. Let X• be an object in sTop. Then we define

|X•| := coeq

,

- ∐
f : i→j∈∆op

Xi × |∆j|
∐ idXi

×|∆ f |
!!

∐X f ×id|∆j |

!! ∐
[n]∈∆op

Xn × |∆n|

.

/

where the coproducts are equipped with the coproduct topology and coequal-
izer is equipped with the quotient topology. Sometimes, we simply write this
as

|X| =
0

∐
n≥0

|∆n|× Xn|
1

/ ∼

where ∼ is the equivalence relation generated by

(x, ∂iy) ∼ (δix, y) and (x, siy) ≃ (σix, y).

One can check that these two spaces are the same.

Example B.1.18. When X is a simplicial set, we define |X| in the same way by
equipping X[n] with the discrete topology for all n ≥ 0.

Exercise B.1.19. The geometric realization of a simplicial set is always a CW
complex.

We can therefore consider the geometric realization as taking values in
compactly generated weak Hausdorff spaces. For the next result of Milnor, it
is important to note that all constructions take place in this category.

Theorem B.1.20 (Milnor). Geometric realization commutes with finite limits. In
particular, there is a homeomorphism

|X• × Y•| ∼= |X•|× |Y•|.

The following is one of the fundamental theorems of simplicial sets.

Theorem B.1.21. There is a natural isomorphism γ−,− of functors sSetop ×Top →
Set defined on objects by

γX,Y : HomTop(|X|, Y) ∼= HomsSet(X, sing(Y)).

Construction B.1.22. There is an alternate way to construct the geometric re-
alization of a simplicial set X that is less intuitive, but makes the proof of
Theorem B.1.21 quite easy. Let ∆ ↓ X denote the category whose objects are
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maps of simplicial sets x : ∆n → X where n ≥ 0 and whose maps x → y are
commuting triangles

∆n x !!

θ∗
""

X

∆m
y

))⑤⑤⑤⑤⑤⑤⑤⑤

where θ : [n] → [m] is a map in ∆. Composition is defined in the evident way.
Then we can define |X| to be the colimit

|X| = colim
∆↓X

|∆n|

in the category of topological spaces.

Exercise B.1.23. Show that the definition of |X| in Construction B.1.22 is the
same as in Construction B.1.17 for simplicial sets up to homeomorphism.

Proof of Theorem B.1.21. Recall that HomTop(−, Y) sends limits in Topop, or in
other words colimits in Top, to limits in Set. Therefore,

HomsSet(|X|, Y) =HomsSet(colim
∆↓X

|∆n|, Y) (B.1.24)

∼= lim
∆↓X

HomsSet(|∆n|, Y) (B.1.25)

= lim
∆↓X

sing(Y)n (B.1.26)

= lim
∆↓X

HomsSet(∆
n, sing(Y)) (B.1.27)

∼=HomsSet(colim
∆↓X

∆n, sing(Y)) (B.1.28)

∼=HomsSet(X, sing(Y)) (B.1.29)

where the equality (B.1.24) is the definition of geometric realization, the iso-
morphism (B.1.25) follows because HomTop(−, Y) send limits in Topop to
limits in Set, as remarked above, the equality (B.1.26) holds by definition
of sing(Y), the equality (B.1.27) holds by Exercise (B.1.8), the isomorphism
(B.1.28) hold because HomTop(−, Y) sends limits in Topop to limits in Set. The
last isomorphism holds because X is a cocone for the functor from ∆ ↓ X →
sSet sending ∆n → X to ∆n.

Recall that Cat denotes the category of small categories. Let [n] be the
small category

0 → 1 → 2 → · · · → n

described in Example A.2.3. These form a cosimplicial object in Cat by letting
the codegeneracy map σi be given by composing the morphisms with source
i and i + 1. and the coface map δi given by inserting an identity map in the
i-th position.
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Definition B.1.30. Given a small category C, we define a simplicial set by
letting the n-simplices be

NC[n] := Cat([n], C),

which should be viewed as a sequence of n composable morphisms, if n >
0 and, and simply the objects in C if n = 0. The face maps are given by
composing two adjacent morphisms and the degeneracy maps are given by
inclusion of the identity morphism. In other words, we simply use the fact
that

[•] : ∆ → Cat

is a cosimplicial object in small categories and therefore, by functoriality,

Cat([n], C)

forms as simplicial set.

For example, any discrete group G can be regarded as a small category
with one object ∗ and morphism set G(∗, ∗) = G. By unpacking the definition,
we see that

NG[n] = Gn

where G0 = ∗. We can be even more explicit in this case. The face maps

∂i : Gn+1 → Gn

are defined by

∂i(g1, . . . gn+1) =

$
%&

%'

(g2, g3, . . . , gn+1) if i = 0
(g1, . . . , gigi+1, . . . , gn+1) if 0 < i < n + 1
(g1, g3, . . . , gn) if i = n

and the degeneracy maps are defined by

si(g1, . . . gn) = (g0, g1, . . . gi−1, 1, gi, . . . , gn−1)

Note, that there was notion special about doing this construction for a discrete
group. More generally, given a topological group G we define an object in sTop
in the same way and we denote it

B(∗, G, ∗) : ∆op → Top.

Definition B.1.31. Given a category C, we define

BC := |NC|.

Given a topological group G, we also define

BG = |B(∗, G, ∗)|.
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Remark B.1.32. Of course, when G is a discrete group then

NG = B(∗, G, ∗)

so there isn’t a conflict in notation.
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